解聚系统的高度加速动力学蒙特卡洛模型

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Dominic Bui Viet, Gustavo Fimbres Weihs, Gobinath Rajarathnam, Ali Abbas
{"title":"解聚系统的高度加速动力学蒙特卡洛模型","authors":"Dominic Bui Viet,&nbsp;Gustavo Fimbres Weihs,&nbsp;Gobinath Rajarathnam,&nbsp;Ali Abbas","doi":"10.1016/j.compchemeng.2024.108945","DOIUrl":null,"url":null,"abstract":"<div><div>Kinetic Monte Carlo (kMC) models are a well-established modelling framework for the simulation of complex free-radical kinetic systems. kMC models offer the advantage of discretely monitoring every chain sequence in the system, providing full accounting of the chain molecular weight distribution. These models are marred by the necessity to simulate a minimum number of molecules, which confers significant computational burden. This paper adapts and creates a highly generalizable methodology for scaling dilute radical populations in discrete stochastic models, such as Gillespie's Stochastic Simulation Algorithm (SSA). The methodology is then applied to a kMC simulation of polystyrene (PS) pyrolysis, using a modelling framework adapted from literature. The results show that the required number of simulated molecules can be successfully reduced by up to three orders of magnitude with minimal loss of convergent behaviour, corresponding to a wall-clock simulation speed reduction of between 95.2 to 99.6 % at common pyrolysis temperatures.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"193 ","pages":"Article 108945"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly accelerated kinetic Monte Carlo models for depolymerisation systems\",\"authors\":\"Dominic Bui Viet,&nbsp;Gustavo Fimbres Weihs,&nbsp;Gobinath Rajarathnam,&nbsp;Ali Abbas\",\"doi\":\"10.1016/j.compchemeng.2024.108945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Kinetic Monte Carlo (kMC) models are a well-established modelling framework for the simulation of complex free-radical kinetic systems. kMC models offer the advantage of discretely monitoring every chain sequence in the system, providing full accounting of the chain molecular weight distribution. These models are marred by the necessity to simulate a minimum number of molecules, which confers significant computational burden. This paper adapts and creates a highly generalizable methodology for scaling dilute radical populations in discrete stochastic models, such as Gillespie's Stochastic Simulation Algorithm (SSA). The methodology is then applied to a kMC simulation of polystyrene (PS) pyrolysis, using a modelling framework adapted from literature. The results show that the required number of simulated molecules can be successfully reduced by up to three orders of magnitude with minimal loss of convergent behaviour, corresponding to a wall-clock simulation speed reduction of between 95.2 to 99.6 % at common pyrolysis temperatures.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"193 \",\"pages\":\"Article 108945\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003636\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003636","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

动力学蒙特卡洛(kMC)模型是一种成熟的建模框架,用于模拟复杂的自由基动力学系统。kMC 模型的优点是可以离散地监测系统中的每一个链序列,从而全面反映链的分子量分布。这些模型的缺点是必须模拟最少数量的分子,这给计算带来了很大的负担。本文对离散随机模型(如 Gillespie 的随机模拟算法 (SSA))中稀释自由基种群的规模进行了调整,并创建了一种高度通用的方法。然后,利用文献中改编的建模框架,将该方法应用于聚苯乙烯(PS)热解的 kMC 模拟。结果表明,在收敛行为损失最小的情况下,所需的模拟分子数量最多可成功减少三个数量级,这相当于在普通热解温度下将壁钟模拟速度降低了 95.2% 至 99.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly accelerated kinetic Monte Carlo models for depolymerisation systems
Kinetic Monte Carlo (kMC) models are a well-established modelling framework for the simulation of complex free-radical kinetic systems. kMC models offer the advantage of discretely monitoring every chain sequence in the system, providing full accounting of the chain molecular weight distribution. These models are marred by the necessity to simulate a minimum number of molecules, which confers significant computational burden. This paper adapts and creates a highly generalizable methodology for scaling dilute radical populations in discrete stochastic models, such as Gillespie's Stochastic Simulation Algorithm (SSA). The methodology is then applied to a kMC simulation of polystyrene (PS) pyrolysis, using a modelling framework adapted from literature. The results show that the required number of simulated molecules can be successfully reduced by up to three orders of magnitude with minimal loss of convergent behaviour, corresponding to a wall-clock simulation speed reduction of between 95.2 to 99.6 % at common pyrolysis temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信