Rafaela Cardoso , Thomas Drouinot , Susana Cardoso de Freitas
{"title":"利用温纳法测量土壤间隙液中尿素酶活性的微型装置","authors":"Rafaela Cardoso , Thomas Drouinot , Susana Cardoso de Freitas","doi":"10.1016/j.bgtech.2024.100120","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a microdevice developed to measure the electrical conductivity of a liquid or a saturated porous medium using Wenner method. It is developed in the context of biocementation as soil improvement technique, which is used in Civil Engineering applications to produce calcium carbonate through bacterial or enzymatic activity, replacing the use of other binder materials such as cement or resins, and therefore reducing carbon footprint. The microdevice was used to measure urease activity in the soil interstitial fluid, to investigate if bacterial activity could be affected by the presence of the particles and tortuosity from pore geometry. Such analysis is important to understand biocementation mechanism inside the soil and helps to improve the design of such treatment solutions. The device is basically a squared reservoir printed in polypropylene using a 3D printing machine, incorporating stainless steel electrodes in its base. The electrical resistivity was computed adopting Wenner method, by connecting 4 PCB electrodes to a signal generator and an oscilloscope for measuring the voltage when a AC current of 1 mA was applied. Both square and sinusoidal waves with 5 kHz frequency were selected among other frequencies. The measurements were adjusted during the calibration of the microdevice, done using standard salt solutions with known electrical conductivity measured using an electrical conductivity probe. For the bacterial activity measurements, the bacterial and urea solutions were added to a uniform-graded size quarzitic sand (average diameter 0.3 mm) placed inside the microdevice and covering completely the electrodes. Bacterial activity was not affected by the presence of the sand, which confirms that this treatment is effective for this type of soils.</div></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"3 1","pages":"Article 100120"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniaturized device to measure urease activity in the soil interstitial fluid using wenner method\",\"authors\":\"Rafaela Cardoso , Thomas Drouinot , Susana Cardoso de Freitas\",\"doi\":\"10.1016/j.bgtech.2024.100120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a microdevice developed to measure the electrical conductivity of a liquid or a saturated porous medium using Wenner method. It is developed in the context of biocementation as soil improvement technique, which is used in Civil Engineering applications to produce calcium carbonate through bacterial or enzymatic activity, replacing the use of other binder materials such as cement or resins, and therefore reducing carbon footprint. The microdevice was used to measure urease activity in the soil interstitial fluid, to investigate if bacterial activity could be affected by the presence of the particles and tortuosity from pore geometry. Such analysis is important to understand biocementation mechanism inside the soil and helps to improve the design of such treatment solutions. The device is basically a squared reservoir printed in polypropylene using a 3D printing machine, incorporating stainless steel electrodes in its base. The electrical resistivity was computed adopting Wenner method, by connecting 4 PCB electrodes to a signal generator and an oscilloscope for measuring the voltage when a AC current of 1 mA was applied. Both square and sinusoidal waves with 5 kHz frequency were selected among other frequencies. The measurements were adjusted during the calibration of the microdevice, done using standard salt solutions with known electrical conductivity measured using an electrical conductivity probe. For the bacterial activity measurements, the bacterial and urea solutions were added to a uniform-graded size quarzitic sand (average diameter 0.3 mm) placed inside the microdevice and covering completely the electrodes. Bacterial activity was not affected by the presence of the sand, which confirms that this treatment is effective for this type of soils.</div></div>\",\"PeriodicalId\":100175,\"journal\":{\"name\":\"Biogeotechnics\",\"volume\":\"3 1\",\"pages\":\"Article 100120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeotechnics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949929124000524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeotechnics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949929124000524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种利用温纳法测量液体或饱和多孔介质电导率的微型装置。生物水泥化是一种土壤改良技术,应用于土木工程领域,通过细菌或酶的活性产生碳酸钙,取代水泥或树脂等其他粘结材料的使用,从而减少碳足迹。该微型装置用于测量土壤间隙流体中的脲酶活性,以研究细菌活性是否会受到颗粒存在和孔隙几何形状迂回的影响。此类分析对于了解土壤内部的生物降解机制非常重要,有助于改进此类处理方案的设计。该装置基本上是一个使用 3D 打印机用聚丙烯打印的方形蓄水池,其底部装有不锈钢电极。电阻率的计算采用温纳法,将 4 个 PCB 电极连接到信号发生器和示波器上,以测量施加 1 mA 交流电时的电压。在其他频率中,选择了频率为 5 kHz 的方波和正弦波。在校准微型设备时,使用标准盐溶液对测量结果进行调整,标准盐溶液的电导率是通过电导率探针测量得出的。在测量细菌活性时,将细菌溶液和尿素溶液加入放置在微装置内并完全覆盖电极的大小均匀的石英砂(平均直径 0.3 毫米)中。细菌活性并没有因为沙子的存在而受到影响,这证明这种处理方法对这类土壤是有效的。
Miniaturized device to measure urease activity in the soil interstitial fluid using wenner method
This paper presents a microdevice developed to measure the electrical conductivity of a liquid or a saturated porous medium using Wenner method. It is developed in the context of biocementation as soil improvement technique, which is used in Civil Engineering applications to produce calcium carbonate through bacterial or enzymatic activity, replacing the use of other binder materials such as cement or resins, and therefore reducing carbon footprint. The microdevice was used to measure urease activity in the soil interstitial fluid, to investigate if bacterial activity could be affected by the presence of the particles and tortuosity from pore geometry. Such analysis is important to understand biocementation mechanism inside the soil and helps to improve the design of such treatment solutions. The device is basically a squared reservoir printed in polypropylene using a 3D printing machine, incorporating stainless steel electrodes in its base. The electrical resistivity was computed adopting Wenner method, by connecting 4 PCB electrodes to a signal generator and an oscilloscope for measuring the voltage when a AC current of 1 mA was applied. Both square and sinusoidal waves with 5 kHz frequency were selected among other frequencies. The measurements were adjusted during the calibration of the microdevice, done using standard salt solutions with known electrical conductivity measured using an electrical conductivity probe. For the bacterial activity measurements, the bacterial and urea solutions were added to a uniform-graded size quarzitic sand (average diameter 0.3 mm) placed inside the microdevice and covering completely the electrodes. Bacterial activity was not affected by the presence of the sand, which confirms that this treatment is effective for this type of soils.