{"title":"用于染料光降解的 BiFe2O4 异质结构的水热合成及其生物学意义","authors":"Sahana Nagarakere Chandranna , Dhananjay Purushotham , Abhilash Mavinakere Ramesh , Srikantaswamy Shivanna","doi":"10.1016/j.esi.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>The extensive use of dyes in the textile industry can be hazardous to human health. Commonly used organic dyes are dangerous and non-biodegradable, which greatly increases the contamination of industrial effluent. Because of their smaller size, greater surface area, and wider band gap, nano-sized metal oxides have drawn interest in heterogeneous photocatalysis as a solution to this problem. These substances are essential for the deterioration of dyes, especially when exposed to sunlight. Within this framework, the investigation aimed to clarify the photocatalytic effectiveness of nanoscale metal oxides by using hydrothermally synthesised bismuth ferrite (BiFe<sub>2</sub>O<sub>4</sub>) nanoparticles. The evaluation focused on how the organic dye molecule degraded in the presence of sun radiation. The materials based on BiFe<sub>2</sub>O<sub>4</sub>, which are recognized for their multi-ferroic characteristics, showed encouraging outcomes for quick photocatalytic degradation. The outcomes showed that organic dyes might be photo degraded under solar light irradiation with remarkable efficiency. Additionally, the BiFe<sub>2</sub>O<sub>4</sub> hetrostructure showed promise in the removal of lead (Pb), Iron (Fe), copper (Cu), and chromium (Cr). The spectroscopic characterization techniques that were employed to investigate the physical properties of the synthesised nanoparticles included X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), UV-Vis spectroscopy, photoluminescence (PL), Brunauer-Emmett-Teller (BET) analysis, dynamic light scattering (DLS), and Raman spectroscopy. The characterization analysis confirmed the structure, shape, functional group, and optical properties of NPs. Using antimicrobial assays, the study also investigated the biological activity of the synthesised compounds.</div></div>","PeriodicalId":100486,"journal":{"name":"Environmental Surfaces and Interfaces","volume":"3 ","pages":"Pages 24-32"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal synthesis of BiFe2O4 heterostructure for photodegradation of dye and biological implications\",\"authors\":\"Sahana Nagarakere Chandranna , Dhananjay Purushotham , Abhilash Mavinakere Ramesh , Srikantaswamy Shivanna\",\"doi\":\"10.1016/j.esi.2024.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The extensive use of dyes in the textile industry can be hazardous to human health. Commonly used organic dyes are dangerous and non-biodegradable, which greatly increases the contamination of industrial effluent. Because of their smaller size, greater surface area, and wider band gap, nano-sized metal oxides have drawn interest in heterogeneous photocatalysis as a solution to this problem. These substances are essential for the deterioration of dyes, especially when exposed to sunlight. Within this framework, the investigation aimed to clarify the photocatalytic effectiveness of nanoscale metal oxides by using hydrothermally synthesised bismuth ferrite (BiFe<sub>2</sub>O<sub>4</sub>) nanoparticles. The evaluation focused on how the organic dye molecule degraded in the presence of sun radiation. The materials based on BiFe<sub>2</sub>O<sub>4</sub>, which are recognized for their multi-ferroic characteristics, showed encouraging outcomes for quick photocatalytic degradation. The outcomes showed that organic dyes might be photo degraded under solar light irradiation with remarkable efficiency. Additionally, the BiFe<sub>2</sub>O<sub>4</sub> hetrostructure showed promise in the removal of lead (Pb), Iron (Fe), copper (Cu), and chromium (Cr). The spectroscopic characterization techniques that were employed to investigate the physical properties of the synthesised nanoparticles included X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), UV-Vis spectroscopy, photoluminescence (PL), Brunauer-Emmett-Teller (BET) analysis, dynamic light scattering (DLS), and Raman spectroscopy. The characterization analysis confirmed the structure, shape, functional group, and optical properties of NPs. Using antimicrobial assays, the study also investigated the biological activity of the synthesised compounds.</div></div>\",\"PeriodicalId\":100486,\"journal\":{\"name\":\"Environmental Surfaces and Interfaces\",\"volume\":\"3 \",\"pages\":\"Pages 24-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Surfaces and Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949864324000195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Surfaces and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949864324000195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrothermal synthesis of BiFe2O4 heterostructure for photodegradation of dye and biological implications
The extensive use of dyes in the textile industry can be hazardous to human health. Commonly used organic dyes are dangerous and non-biodegradable, which greatly increases the contamination of industrial effluent. Because of their smaller size, greater surface area, and wider band gap, nano-sized metal oxides have drawn interest in heterogeneous photocatalysis as a solution to this problem. These substances are essential for the deterioration of dyes, especially when exposed to sunlight. Within this framework, the investigation aimed to clarify the photocatalytic effectiveness of nanoscale metal oxides by using hydrothermally synthesised bismuth ferrite (BiFe2O4) nanoparticles. The evaluation focused on how the organic dye molecule degraded in the presence of sun radiation. The materials based on BiFe2O4, which are recognized for their multi-ferroic characteristics, showed encouraging outcomes for quick photocatalytic degradation. The outcomes showed that organic dyes might be photo degraded under solar light irradiation with remarkable efficiency. Additionally, the BiFe2O4 hetrostructure showed promise in the removal of lead (Pb), Iron (Fe), copper (Cu), and chromium (Cr). The spectroscopic characterization techniques that were employed to investigate the physical properties of the synthesised nanoparticles included X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), UV-Vis spectroscopy, photoluminescence (PL), Brunauer-Emmett-Teller (BET) analysis, dynamic light scattering (DLS), and Raman spectroscopy. The characterization analysis confirmed the structure, shape, functional group, and optical properties of NPs. Using antimicrobial assays, the study also investigated the biological activity of the synthesised compounds.