Xueyu Song, Zunji Jian, Ke Wei, Xiaoyi Wang, Wenfa Xiao
{"title":"亚热带马松森林中松树枯萎病感染对多种生态系统服务及其权衡的影响","authors":"Xueyu Song, Zunji Jian, Ke Wei, Xiaoyi Wang, Wenfa Xiao","doi":"10.1016/j.gecco.2024.e03316","DOIUrl":null,"url":null,"abstract":"<div><div>Pine wilt disease (PWD) severely damages the health, stability, and functions of pine forests. However, empirical evidence regarding the impact of PWD on multiple ecosystem services in these forest ecosystems remains limited. This study investigated five ecosystem services, namely carbon sequestration, water conservation, soil nutrient accumulation, biomass nutrient accumulation and understory plant diversity in subtropical Masson pine (<em>Pinus massoniana</em>) forests, and quantified their trade-offs along varying ages of PWD infection (uninfected (0 years), 6, 10, and 16 years). The results showed that PWD infection significantly affected ecosystem services in Masson pine forests, with decreased carbon sequestration, water conservation, and biomass nutrient accumulation in 6 years of PWD infection forests. As the duration of PWD infection increased, the composite score of ecosystem services initially decreased, then increased, and finally decreased again. In contrast, soil conservation and understory plant diversity showed an initial increase, followed by a decline. Moreover, PWD infection increased the trade-offs among ecosystem services, with the highest trade-offs for 10 years of infected forests. PWD infection altered the trade-offs between understory plant diversity and other ecosystem services from low to high levels. Our results suggest that forest management should be strengthened to accelerate the recovery of ecosystem services while controlling PWD infection in these disturbed forests.</div></div>","PeriodicalId":54264,"journal":{"name":"Global Ecology and Conservation","volume":"56 ","pages":"Article e03316"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of pine wilt disease infection on multiple ecosystem services and their trade-offs in subtropical Masson pine forests\",\"authors\":\"Xueyu Song, Zunji Jian, Ke Wei, Xiaoyi Wang, Wenfa Xiao\",\"doi\":\"10.1016/j.gecco.2024.e03316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pine wilt disease (PWD) severely damages the health, stability, and functions of pine forests. However, empirical evidence regarding the impact of PWD on multiple ecosystem services in these forest ecosystems remains limited. This study investigated five ecosystem services, namely carbon sequestration, water conservation, soil nutrient accumulation, biomass nutrient accumulation and understory plant diversity in subtropical Masson pine (<em>Pinus massoniana</em>) forests, and quantified their trade-offs along varying ages of PWD infection (uninfected (0 years), 6, 10, and 16 years). The results showed that PWD infection significantly affected ecosystem services in Masson pine forests, with decreased carbon sequestration, water conservation, and biomass nutrient accumulation in 6 years of PWD infection forests. As the duration of PWD infection increased, the composite score of ecosystem services initially decreased, then increased, and finally decreased again. In contrast, soil conservation and understory plant diversity showed an initial increase, followed by a decline. Moreover, PWD infection increased the trade-offs among ecosystem services, with the highest trade-offs for 10 years of infected forests. PWD infection altered the trade-offs between understory plant diversity and other ecosystem services from low to high levels. Our results suggest that forest management should be strengthened to accelerate the recovery of ecosystem services while controlling PWD infection in these disturbed forests.</div></div>\",\"PeriodicalId\":54264,\"journal\":{\"name\":\"Global Ecology and Conservation\",\"volume\":\"56 \",\"pages\":\"Article e03316\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2351989424005201\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2351989424005201","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Impact of pine wilt disease infection on multiple ecosystem services and their trade-offs in subtropical Masson pine forests
Pine wilt disease (PWD) severely damages the health, stability, and functions of pine forests. However, empirical evidence regarding the impact of PWD on multiple ecosystem services in these forest ecosystems remains limited. This study investigated five ecosystem services, namely carbon sequestration, water conservation, soil nutrient accumulation, biomass nutrient accumulation and understory plant diversity in subtropical Masson pine (Pinus massoniana) forests, and quantified their trade-offs along varying ages of PWD infection (uninfected (0 years), 6, 10, and 16 years). The results showed that PWD infection significantly affected ecosystem services in Masson pine forests, with decreased carbon sequestration, water conservation, and biomass nutrient accumulation in 6 years of PWD infection forests. As the duration of PWD infection increased, the composite score of ecosystem services initially decreased, then increased, and finally decreased again. In contrast, soil conservation and understory plant diversity showed an initial increase, followed by a decline. Moreover, PWD infection increased the trade-offs among ecosystem services, with the highest trade-offs for 10 years of infected forests. PWD infection altered the trade-offs between understory plant diversity and other ecosystem services from low to high levels. Our results suggest that forest management should be strengthened to accelerate the recovery of ecosystem services while controlling PWD infection in these disturbed forests.
期刊介绍:
Global Ecology and Conservation is a peer-reviewed, open-access journal covering all sub-disciplines of ecological and conservation science: from theory to practice, from molecules to ecosystems, from regional to global. The fields covered include: organismal, population, community, and ecosystem ecology; physiological, evolutionary, and behavioral ecology; and conservation science.