{"title":"Pantheon+ 样本中哈勃常数局部各向异性的稳健评估","authors":"Yves-Henri Sanejouand","doi":"10.1016/j.newast.2024.102331","DOIUrl":null,"url":null,"abstract":"<div><div>Magnitude predictions of <span><math><mi>Λ</mi></math></span>CDM, as parametrized by the Planck collaboration, are not consistent with the supernova Ia data of the whole Pantheon+ sample even when, in order to take into account the uncertainty about its value, the Hubble constant is adjusted. This is a likely consequence of the increase of the number of low-redshift supernovae in the Pantheon+ sample, with respect to previous such samples.</div><div>In order to find directions in the sky where the Hubble flow is quiet, that is, where model predictions are consistent with both low and high-redshift supernova data, predicted magnitudes of several models were compared to the corrected B band magnitudes of the supernovae of the Pantheon+ sample.</div><div>When supernovae at redshifts below 0.035 are ignored, with <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>73</mn><mo>.</mo><mn>4</mn></mrow></math></span> km<span><math><mi>⋅</mi></math></span>s<span><math><mrow><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>⋅</mi></mrow></math></span>Mpc<sup>−1</sup>, <span><math><mi>Λ</mi></math></span>CDM predictions become consistent with Pantheon+ data. This is also the case when subsets of low-redshift supernovae roughly centered on the direction of the CMB dipole are considered, together with high-redshift ones, at least when CMB and peculiar velocities corrections are taken into account for the redshifts. These results seem robust, since they are also obtained with a simple, single-parameter tired-light model.</div></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"116 ","pages":"Article 102331"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust assessment of the local anisotropy of the Hubble constant in the Pantheon+ sample\",\"authors\":\"Yves-Henri Sanejouand\",\"doi\":\"10.1016/j.newast.2024.102331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnitude predictions of <span><math><mi>Λ</mi></math></span>CDM, as parametrized by the Planck collaboration, are not consistent with the supernova Ia data of the whole Pantheon+ sample even when, in order to take into account the uncertainty about its value, the Hubble constant is adjusted. This is a likely consequence of the increase of the number of low-redshift supernovae in the Pantheon+ sample, with respect to previous such samples.</div><div>In order to find directions in the sky where the Hubble flow is quiet, that is, where model predictions are consistent with both low and high-redshift supernova data, predicted magnitudes of several models were compared to the corrected B band magnitudes of the supernovae of the Pantheon+ sample.</div><div>When supernovae at redshifts below 0.035 are ignored, with <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>73</mn><mo>.</mo><mn>4</mn></mrow></math></span> km<span><math><mi>⋅</mi></math></span>s<span><math><mrow><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>⋅</mi></mrow></math></span>Mpc<sup>−1</sup>, <span><math><mi>Λ</mi></math></span>CDM predictions become consistent with Pantheon+ data. This is also the case when subsets of low-redshift supernovae roughly centered on the direction of the CMB dipole are considered, together with high-redshift ones, at least when CMB and peculiar velocities corrections are taken into account for the redshifts. These results seem robust, since they are also obtained with a simple, single-parameter tired-light model.</div></div>\",\"PeriodicalId\":54727,\"journal\":{\"name\":\"New Astronomy\",\"volume\":\"116 \",\"pages\":\"Article 102331\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1384107624001453\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107624001453","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
A robust assessment of the local anisotropy of the Hubble constant in the Pantheon+ sample
Magnitude predictions of CDM, as parametrized by the Planck collaboration, are not consistent with the supernova Ia data of the whole Pantheon+ sample even when, in order to take into account the uncertainty about its value, the Hubble constant is adjusted. This is a likely consequence of the increase of the number of low-redshift supernovae in the Pantheon+ sample, with respect to previous such samples.
In order to find directions in the sky where the Hubble flow is quiet, that is, where model predictions are consistent with both low and high-redshift supernova data, predicted magnitudes of several models were compared to the corrected B band magnitudes of the supernovae of the Pantheon+ sample.
When supernovae at redshifts below 0.035 are ignored, with kmsMpc−1, CDM predictions become consistent with Pantheon+ data. This is also the case when subsets of low-redshift supernovae roughly centered on the direction of the CMB dipole are considered, together with high-redshift ones, at least when CMB and peculiar velocities corrections are taken into account for the redshifts. These results seem robust, since they are also obtained with a simple, single-parameter tired-light model.
期刊介绍:
New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation.
New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.