Yuting Zhong , Chengxuan Yu , Sijia Feng , Han Gao , Luyi Sun , Yunxia Li , Shiyi Chen , Jun Chen
{"title":"大面积肩袖撕裂补片桥接重建中的最佳缝合技术:有限元分析","authors":"Yuting Zhong , Chengxuan Yu , Sijia Feng , Han Gao , Luyi Sun , Yunxia Li , Shiyi Chen , Jun Chen","doi":"10.1016/j.asmart.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To use a finite element method to construct a patch-bridge repair model for massive rotator cuff tears (MRCTs) and investigate the effects of different suture methods and knot numbers on postoperative biomechanics.</div></div><div><h3>Methods</h3><div>A finite element model based on intact glenohumeral joint data was used for a biomechanical study. A full-thickness defect and retraction model of the supraspinatus tendon simulated MRCTs. Patch, suture, and anchor models were constructed, and the Marlow method was used to assign the material properties. Three suturing models were established: 1-knot simple, 1-knot mattress, and 2-knot mattress. The ultimate failure load, failure mode, stress distribution of each structure, and other biomechanical results of the different models were calculated and compared.</div></div><div><h3>Results</h3><div>The ultimate failure load of the 1-knot mattress suture (71.3 N) was 5.6 % greater than that of the 1-knot simple suture (67.5 N), while that (81.5 N) of the 2-knot mattress was 14.3 % greater than that of the 1-knot mattress. The stress distribution on the patch and supraspinatus tendon was concentrated on suture perforation. Failure of the bridging reconstruction mainly occurred at the suture perforation of the patch, and the damage forms included cutting-through and isthmus pull-out.</div></div><div><h3>Conclusion</h3><div>A finite element model for the patch-bridging reconstruction of MRCTs was established, and patch-bridging restored the mechanical integrity of the rotator cuff. The 2-knot mattress suture was optimal for patch-bridging reconstruction of MRCTs.</div></div>","PeriodicalId":44283,"journal":{"name":"Asia-Pacific Journal of Sport Medicine Arthroscopy Rehabilitation and Technology","volume":"39 ","pages":"Pages 22-29"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal suturing techniques in patch-bridging reconstruction for massive rotator cuff tears: A finite element analysis\",\"authors\":\"Yuting Zhong , Chengxuan Yu , Sijia Feng , Han Gao , Luyi Sun , Yunxia Li , Shiyi Chen , Jun Chen\",\"doi\":\"10.1016/j.asmart.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>To use a finite element method to construct a patch-bridge repair model for massive rotator cuff tears (MRCTs) and investigate the effects of different suture methods and knot numbers on postoperative biomechanics.</div></div><div><h3>Methods</h3><div>A finite element model based on intact glenohumeral joint data was used for a biomechanical study. A full-thickness defect and retraction model of the supraspinatus tendon simulated MRCTs. Patch, suture, and anchor models were constructed, and the Marlow method was used to assign the material properties. Three suturing models were established: 1-knot simple, 1-knot mattress, and 2-knot mattress. The ultimate failure load, failure mode, stress distribution of each structure, and other biomechanical results of the different models were calculated and compared.</div></div><div><h3>Results</h3><div>The ultimate failure load of the 1-knot mattress suture (71.3 N) was 5.6 % greater than that of the 1-knot simple suture (67.5 N), while that (81.5 N) of the 2-knot mattress was 14.3 % greater than that of the 1-knot mattress. The stress distribution on the patch and supraspinatus tendon was concentrated on suture perforation. Failure of the bridging reconstruction mainly occurred at the suture perforation of the patch, and the damage forms included cutting-through and isthmus pull-out.</div></div><div><h3>Conclusion</h3><div>A finite element model for the patch-bridging reconstruction of MRCTs was established, and patch-bridging restored the mechanical integrity of the rotator cuff. The 2-knot mattress suture was optimal for patch-bridging reconstruction of MRCTs.</div></div>\",\"PeriodicalId\":44283,\"journal\":{\"name\":\"Asia-Pacific Journal of Sport Medicine Arthroscopy Rehabilitation and Technology\",\"volume\":\"39 \",\"pages\":\"Pages 22-29\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Sport Medicine Arthroscopy Rehabilitation and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221468732400027X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Sport Medicine Arthroscopy Rehabilitation and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221468732400027X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Optimal suturing techniques in patch-bridging reconstruction for massive rotator cuff tears: A finite element analysis
Purpose
To use a finite element method to construct a patch-bridge repair model for massive rotator cuff tears (MRCTs) and investigate the effects of different suture methods and knot numbers on postoperative biomechanics.
Methods
A finite element model based on intact glenohumeral joint data was used for a biomechanical study. A full-thickness defect and retraction model of the supraspinatus tendon simulated MRCTs. Patch, suture, and anchor models were constructed, and the Marlow method was used to assign the material properties. Three suturing models were established: 1-knot simple, 1-knot mattress, and 2-knot mattress. The ultimate failure load, failure mode, stress distribution of each structure, and other biomechanical results of the different models were calculated and compared.
Results
The ultimate failure load of the 1-knot mattress suture (71.3 N) was 5.6 % greater than that of the 1-knot simple suture (67.5 N), while that (81.5 N) of the 2-knot mattress was 14.3 % greater than that of the 1-knot mattress. The stress distribution on the patch and supraspinatus tendon was concentrated on suture perforation. Failure of the bridging reconstruction mainly occurred at the suture perforation of the patch, and the damage forms included cutting-through and isthmus pull-out.
Conclusion
A finite element model for the patch-bridging reconstruction of MRCTs was established, and patch-bridging restored the mechanical integrity of the rotator cuff. The 2-knot mattress suture was optimal for patch-bridging reconstruction of MRCTs.
期刊介绍:
The Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology (AP-SMART) is the official peer-reviewed, open access journal of the Asia-Pacific Knee, Arthroscopy and Sports Medicine Society (APKASS) and the Japanese Orthopaedic Society of Knee, Arthroscopy and Sports Medicine (JOSKAS). It is published quarterly, in January, April, July and October, by Elsevier. The mission of AP-SMART is to inspire clinicians, practitioners, scientists and engineers to work towards a common goal to improve quality of life in the international community. The Journal publishes original research, reviews, editorials, perspectives, and letters to the Editor. Multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines will be the trend in the coming decades. AP-SMART provides a platform for the exchange of new clinical and scientific information in the most precise and expeditious way to achieve timely dissemination of information and cross-fertilization of ideas.