Jianyu Liu , Xinbin Li , Jing Liu , Yajun Xu , Guang Pan
{"title":"基于数值和半分析方法的耦合推进轴壳系统振动分析","authors":"Jianyu Liu , Xinbin Li , Jing Liu , Yajun Xu , Guang Pan","doi":"10.1016/j.jsv.2024.118845","DOIUrl":null,"url":null,"abstract":"<div><div>The bidirectional coupling characteristics of vibrations for the propulsion shaft and the combined shell should be produced in the ocean conditions. Many previous studies always simplified the coupling relationship between the propulsion shaft and the combined shell, which neglected the deformation of the flexible shell or the time-varying stiffness of the support bearings. In this work, a comprehensive dynamic model of the flexible propulsion shaft-combined shell system is established, which considers the time-varying stiffness and contact forces of the bearings. A solution strategy approach combining the numerical and semi-analytical methods is adopted to improve the computational efficiency and reasonable accuracy of the previous methods. The dynamic responses of the system with the time-varying and time-in various bearing stiffness are compared to show the advantages of the proposed model. Note that the time-varying stiffness of the bearings can significantly affect the vibrations of the flexible coupled system. Moreover, the influences of the flexible shell thickness, eccentricity errors of the flexible shaft, and the bearing arrangements on the coupled system's vibrations are investigated. The findings can provide some references for the optimization methods of the vibration and noise reduction in underwater vehicles.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"599 ","pages":"Article 118845"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration analysis of a coupled propulsion shaft-shell system based on the numerical and semi-analytical methods\",\"authors\":\"Jianyu Liu , Xinbin Li , Jing Liu , Yajun Xu , Guang Pan\",\"doi\":\"10.1016/j.jsv.2024.118845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The bidirectional coupling characteristics of vibrations for the propulsion shaft and the combined shell should be produced in the ocean conditions. Many previous studies always simplified the coupling relationship between the propulsion shaft and the combined shell, which neglected the deformation of the flexible shell or the time-varying stiffness of the support bearings. In this work, a comprehensive dynamic model of the flexible propulsion shaft-combined shell system is established, which considers the time-varying stiffness and contact forces of the bearings. A solution strategy approach combining the numerical and semi-analytical methods is adopted to improve the computational efficiency and reasonable accuracy of the previous methods. The dynamic responses of the system with the time-varying and time-in various bearing stiffness are compared to show the advantages of the proposed model. Note that the time-varying stiffness of the bearings can significantly affect the vibrations of the flexible coupled system. Moreover, the influences of the flexible shell thickness, eccentricity errors of the flexible shaft, and the bearing arrangements on the coupled system's vibrations are investigated. The findings can provide some references for the optimization methods of the vibration and noise reduction in underwater vehicles.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":\"599 \",\"pages\":\"Article 118845\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X24006072\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24006072","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Vibration analysis of a coupled propulsion shaft-shell system based on the numerical and semi-analytical methods
The bidirectional coupling characteristics of vibrations for the propulsion shaft and the combined shell should be produced in the ocean conditions. Many previous studies always simplified the coupling relationship between the propulsion shaft and the combined shell, which neglected the deformation of the flexible shell or the time-varying stiffness of the support bearings. In this work, a comprehensive dynamic model of the flexible propulsion shaft-combined shell system is established, which considers the time-varying stiffness and contact forces of the bearings. A solution strategy approach combining the numerical and semi-analytical methods is adopted to improve the computational efficiency and reasonable accuracy of the previous methods. The dynamic responses of the system with the time-varying and time-in various bearing stiffness are compared to show the advantages of the proposed model. Note that the time-varying stiffness of the bearings can significantly affect the vibrations of the flexible coupled system. Moreover, the influences of the flexible shell thickness, eccentricity errors of the flexible shaft, and the bearing arrangements on the coupled system's vibrations are investigated. The findings can provide some references for the optimization methods of the vibration and noise reduction in underwater vehicles.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.