Yi Wang , Yajie Meng , Chang Zhou , Xianfang Tang , Pan Zeng , Chu Pan , Qiang Zhu , Bengong Zhang , Junlin Xu
{"title":"药物重新定位的自动协作学习","authors":"Yi Wang , Yajie Meng , Chang Zhou , Xianfang Tang , Pan Zeng , Chu Pan , Qiang Zhu , Bengong Zhang , Junlin Xu","doi":"10.1016/j.engappai.2024.109653","DOIUrl":null,"url":null,"abstract":"<div><div>Drug repositioning seeks to identify new therapeutic uses for existing drugs, accelerating development and reducing costs. While traditional wet lab experiments are costly, computational methods offer a low-cost, efficient alternative. Despite their potential, most research in this field has uncritically employed the standard message-passing mechanism of Graph Neural Network (GNN), limiting the assessment of collaborative effects on prediction accuracy. In this paper, we introduce a novel model, an automatic collaborative learning framework for drug repositioning. Initially, we propose a metric to measure the interaction levels among neighbors and integrate it with the intrinsic message-passing mechanism of GNN, thereby enhancing the impact of various collaborative effects on prediction accuracy. Furthermore, we introduce an advanced contrastive learning technique to align feature consistency between the disease–drug association space and the customized neighbor space. This approach leverages the inherent regularities across different feature dimensions to minimize feature redundancy. Extensive experiments conducted on three benchmark datasets demonstrate substantial improvements of this novel model over various state-of-the-art methods. Case studies further highlight the practical utility of this model.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109653"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic collaborative learning for drug repositioning\",\"authors\":\"Yi Wang , Yajie Meng , Chang Zhou , Xianfang Tang , Pan Zeng , Chu Pan , Qiang Zhu , Bengong Zhang , Junlin Xu\",\"doi\":\"10.1016/j.engappai.2024.109653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drug repositioning seeks to identify new therapeutic uses for existing drugs, accelerating development and reducing costs. While traditional wet lab experiments are costly, computational methods offer a low-cost, efficient alternative. Despite their potential, most research in this field has uncritically employed the standard message-passing mechanism of Graph Neural Network (GNN), limiting the assessment of collaborative effects on prediction accuracy. In this paper, we introduce a novel model, an automatic collaborative learning framework for drug repositioning. Initially, we propose a metric to measure the interaction levels among neighbors and integrate it with the intrinsic message-passing mechanism of GNN, thereby enhancing the impact of various collaborative effects on prediction accuracy. Furthermore, we introduce an advanced contrastive learning technique to align feature consistency between the disease–drug association space and the customized neighbor space. This approach leverages the inherent regularities across different feature dimensions to minimize feature redundancy. Extensive experiments conducted on three benchmark datasets demonstrate substantial improvements of this novel model over various state-of-the-art methods. Case studies further highlight the practical utility of this model.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"139 \",\"pages\":\"Article 109653\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624018116\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018116","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Automatic collaborative learning for drug repositioning
Drug repositioning seeks to identify new therapeutic uses for existing drugs, accelerating development and reducing costs. While traditional wet lab experiments are costly, computational methods offer a low-cost, efficient alternative. Despite their potential, most research in this field has uncritically employed the standard message-passing mechanism of Graph Neural Network (GNN), limiting the assessment of collaborative effects on prediction accuracy. In this paper, we introduce a novel model, an automatic collaborative learning framework for drug repositioning. Initially, we propose a metric to measure the interaction levels among neighbors and integrate it with the intrinsic message-passing mechanism of GNN, thereby enhancing the impact of various collaborative effects on prediction accuracy. Furthermore, we introduce an advanced contrastive learning technique to align feature consistency between the disease–drug association space and the customized neighbor space. This approach leverages the inherent regularities across different feature dimensions to minimize feature redundancy. Extensive experiments conducted on three benchmark datasets demonstrate substantial improvements of this novel model over various state-of-the-art methods. Case studies further highlight the practical utility of this model.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.