{"title":"基于主动轮廓的深度卷积神经网络模型,用于多缺陷晶片图模式分类","authors":"Jeonghoon Choi, Dongjun Suh","doi":"10.1016/j.engappai.2024.109707","DOIUrl":null,"url":null,"abstract":"<div><div>As semiconductor manufacturing processes continue to witness increased integration density and design complexity, semiconductor wafers are experiencing a growing diversity and complexity of defects. While previous research in wafer map classification using deep learning has made significant advancements in dealing with single defect patterns, the classification of mixed-type defects has received less attention due to their considerably higher difficulty level compared to single defects. This research addresses this critical gap, emphasizing the need for improved methods to classify mixed-type defects, which are more complex and challenging. To tackle this challenge, this paper introduces the active contour-based lightweight depthwise network (AC-LDN) model for the classification of multi-defect wafer map patterns. Initially, multi-defect features are extracted using an active contour-based segmentation model. Subsequently, the learning model employs a depthwise convolutional neural network (CNN) architecture that combines separable CNN and dilated CNN techniques. This unique approach optimizes the model in the separable segment while effectively addressing defect complexity in the depthwise segments. Consequently, AC-LDN outperforms other state-of-the-art models, offering a balance between lightweight characteristics and high accuracy. The proposed method demonstrates its superiority over previous models when evaluated on the extsdsensive multi-wafer map dataset, achieving an average classification accuracy exceeding 98% and a confusion matrix coefficient surpassing 0.97.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109707"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A depthwise convolutional neural network model based on active contour for multi-defect wafer map pattern classification\",\"authors\":\"Jeonghoon Choi, Dongjun Suh\",\"doi\":\"10.1016/j.engappai.2024.109707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As semiconductor manufacturing processes continue to witness increased integration density and design complexity, semiconductor wafers are experiencing a growing diversity and complexity of defects. While previous research in wafer map classification using deep learning has made significant advancements in dealing with single defect patterns, the classification of mixed-type defects has received less attention due to their considerably higher difficulty level compared to single defects. This research addresses this critical gap, emphasizing the need for improved methods to classify mixed-type defects, which are more complex and challenging. To tackle this challenge, this paper introduces the active contour-based lightweight depthwise network (AC-LDN) model for the classification of multi-defect wafer map patterns. Initially, multi-defect features are extracted using an active contour-based segmentation model. Subsequently, the learning model employs a depthwise convolutional neural network (CNN) architecture that combines separable CNN and dilated CNN techniques. This unique approach optimizes the model in the separable segment while effectively addressing defect complexity in the depthwise segments. Consequently, AC-LDN outperforms other state-of-the-art models, offering a balance between lightweight characteristics and high accuracy. The proposed method demonstrates its superiority over previous models when evaluated on the extsdsensive multi-wafer map dataset, achieving an average classification accuracy exceeding 98% and a confusion matrix coefficient surpassing 0.97.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"139 \",\"pages\":\"Article 109707\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624018657\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018657","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A depthwise convolutional neural network model based on active contour for multi-defect wafer map pattern classification
As semiconductor manufacturing processes continue to witness increased integration density and design complexity, semiconductor wafers are experiencing a growing diversity and complexity of defects. While previous research in wafer map classification using deep learning has made significant advancements in dealing with single defect patterns, the classification of mixed-type defects has received less attention due to their considerably higher difficulty level compared to single defects. This research addresses this critical gap, emphasizing the need for improved methods to classify mixed-type defects, which are more complex and challenging. To tackle this challenge, this paper introduces the active contour-based lightweight depthwise network (AC-LDN) model for the classification of multi-defect wafer map patterns. Initially, multi-defect features are extracted using an active contour-based segmentation model. Subsequently, the learning model employs a depthwise convolutional neural network (CNN) architecture that combines separable CNN and dilated CNN techniques. This unique approach optimizes the model in the separable segment while effectively addressing defect complexity in the depthwise segments. Consequently, AC-LDN outperforms other state-of-the-art models, offering a balance between lightweight characteristics and high accuracy. The proposed method demonstrates its superiority over previous models when evaluated on the extsdsensive multi-wafer map dataset, achieving an average classification accuracy exceeding 98% and a confusion matrix coefficient surpassing 0.97.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.