{"title":"有条件二维简单随机游走的逃逸率","authors":"Orphée Collin , Serguei Popov","doi":"10.1016/j.spa.2024.104469","DOIUrl":null,"url":null,"abstract":"<div><div>We prove sharp asymptotic estimates for the rate of escape of the two-dimensional simple random walk conditioned to avoid a fixed finite set. We derive it from asymptotics available for the continuous analogue of this process (Collin and Comets, 2022), with the help of a KMT-type coupling adapted to this setup.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104469"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rate of escape of the conditioned two-dimensional simple random walk\",\"authors\":\"Orphée Collin , Serguei Popov\",\"doi\":\"10.1016/j.spa.2024.104469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove sharp asymptotic estimates for the rate of escape of the two-dimensional simple random walk conditioned to avoid a fixed finite set. We derive it from asymptotics available for the continuous analogue of this process (Collin and Comets, 2022), with the help of a KMT-type coupling adapted to this setup.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"179 \",\"pages\":\"Article 104469\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924001753\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001753","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Rate of escape of the conditioned two-dimensional simple random walk
We prove sharp asymptotic estimates for the rate of escape of the two-dimensional simple random walk conditioned to avoid a fixed finite set. We derive it from asymptotics available for the continuous analogue of this process (Collin and Comets, 2022), with the help of a KMT-type coupling adapted to this setup.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.