Gabriel Riedl , Francesco Baldi , Gernot M. Wallner
{"title":"基于斜率的 J 积分法和先进的图像处理技术用于评估粘合剂接头的循环疲劳分层行为","authors":"Gabriel Riedl , Francesco Baldi , Gernot M. Wallner","doi":"10.1016/j.ijfatigue.2024.108730","DOIUrl":null,"url":null,"abstract":"<div><div>A fatigue fracture mechanics methodology was developed and established, employing a slope-based J-integral approach combined with advanced image processing techniques. Adhesively bonded double cantilever beam (DCB) specimens were tested under constant displacement amplitude loading. The beam rotation was tracked by affixing a repetitive pattern on the DCB specimens and capturing images at the maximum displacement amplitude. Using a custom-developed image processing procedure, the beam rotation was deduced. To validate the methodology, DCB fatigue experiments were conducted at 23, 60 and 75 °C on aluminum adherends bonded with a structural 2-K epoxy adhesive. The J-based approach was compared with a conventional, compliance-based linear elastic fracture mechanics (LEFM) method. The epoxy was a rather brittle, high-modulus adhesive with a bond line thickness of 0.25 mm, resulting in predominantly linear elastic material behavior. By analyzing the images taken during fatigue testing, a stiffening effect of the steel load blocks was observed. Excluding pattern elements directly below the load block yielded the best agreement between J-integral and LEFM data. Both approaches were in excellent agreement within the investigated temperature range. The investigated adhesive exhibited a highly temperature-dependent behavior, which was associated with higher crack propagation rates and a lower fatigue threshold at 60 and 75 °C.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"192 ","pages":"Article 108730"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A slope-based J-integral approach and advanced image processing for assessment of the cyclic fatigue delamination behavior of adhesive joints\",\"authors\":\"Gabriel Riedl , Francesco Baldi , Gernot M. Wallner\",\"doi\":\"10.1016/j.ijfatigue.2024.108730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A fatigue fracture mechanics methodology was developed and established, employing a slope-based J-integral approach combined with advanced image processing techniques. Adhesively bonded double cantilever beam (DCB) specimens were tested under constant displacement amplitude loading. The beam rotation was tracked by affixing a repetitive pattern on the DCB specimens and capturing images at the maximum displacement amplitude. Using a custom-developed image processing procedure, the beam rotation was deduced. To validate the methodology, DCB fatigue experiments were conducted at 23, 60 and 75 °C on aluminum adherends bonded with a structural 2-K epoxy adhesive. The J-based approach was compared with a conventional, compliance-based linear elastic fracture mechanics (LEFM) method. The epoxy was a rather brittle, high-modulus adhesive with a bond line thickness of 0.25 mm, resulting in predominantly linear elastic material behavior. By analyzing the images taken during fatigue testing, a stiffening effect of the steel load blocks was observed. Excluding pattern elements directly below the load block yielded the best agreement between J-integral and LEFM data. Both approaches were in excellent agreement within the investigated temperature range. The investigated adhesive exhibited a highly temperature-dependent behavior, which was associated with higher crack propagation rates and a lower fatigue threshold at 60 and 75 °C.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"192 \",\"pages\":\"Article 108730\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324005899\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005899","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A slope-based J-integral approach and advanced image processing for assessment of the cyclic fatigue delamination behavior of adhesive joints
A fatigue fracture mechanics methodology was developed and established, employing a slope-based J-integral approach combined with advanced image processing techniques. Adhesively bonded double cantilever beam (DCB) specimens were tested under constant displacement amplitude loading. The beam rotation was tracked by affixing a repetitive pattern on the DCB specimens and capturing images at the maximum displacement amplitude. Using a custom-developed image processing procedure, the beam rotation was deduced. To validate the methodology, DCB fatigue experiments were conducted at 23, 60 and 75 °C on aluminum adherends bonded with a structural 2-K epoxy adhesive. The J-based approach was compared with a conventional, compliance-based linear elastic fracture mechanics (LEFM) method. The epoxy was a rather brittle, high-modulus adhesive with a bond line thickness of 0.25 mm, resulting in predominantly linear elastic material behavior. By analyzing the images taken during fatigue testing, a stiffening effect of the steel load blocks was observed. Excluding pattern elements directly below the load block yielded the best agreement between J-integral and LEFM data. Both approaches were in excellent agreement within the investigated temperature range. The investigated adhesive exhibited a highly temperature-dependent behavior, which was associated with higher crack propagation rates and a lower fatigue threshold at 60 and 75 °C.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.