Boya Wu , Guocai Xu , Meichen Liu , Yan Zhu , Junwan Li , Xiaochun Wu
{"title":"循环热机械加载下 AISI H13 钢的疲劳损伤和寿命预测","authors":"Boya Wu , Guocai Xu , Meichen Liu , Yan Zhu , Junwan Li , Xiaochun Wu","doi":"10.1016/j.ijfatigue.2024.108718","DOIUrl":null,"url":null,"abstract":"<div><div>Based on strain-controlled thermomechanical fatigue (TMF) experiments, this study conducts a comprehensive analysis of the TMF behavior of AISI H13 hot work die steel. Moreover, a life prediction model for the TMF behavior of AISI H13 steel has been developed and validated. The experimental results reveal that, under the in-phase (IP) and out-of-phase (OP) TMF conditions, the stress–strain response curves of AISI H13 steel under different mechanical strain amplitudes exhibits the similar evolution tendency. However, it is worth noting that in the stable TMF cycle, the hysteresis loop area is enlarged with the increase of the number of cycles, which can be attributed to the cyclic softening characteristics of the AISI H13 steel under cyclic thermomechanical loading. When examining different TMF conditions, it is found that at higher strain amplitudes and under OP TMF conditions, the hysteresis loop area significantly expands, leading to a substantial reduction in the TMF life of AISI H13 steel. From a microstructural perspective, the thermal–mechanical coupling effect makes the recovery of martensitic matrix and the coarsening of carbide precipitation, which substantiates the deterioration of mechanical properties of AISI H13 steel. Finally, a modified Ostergren model by integrating the hysteresis loop area has been developed to assess the TMF life of AISI H13 steel under complex thermomechanical loading conditions, and this refined model exhibits strong agreement with experimental data. An evaluation using scatter band shows that the predicted TMF life of AISI H13 steel are within 1.2 times the experimental values, which illustrates a high reliability and validity.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"192 ","pages":"Article 108718"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue damage and life prediction for AISI H13 steel under cyclic thermomechanical loading\",\"authors\":\"Boya Wu , Guocai Xu , Meichen Liu , Yan Zhu , Junwan Li , Xiaochun Wu\",\"doi\":\"10.1016/j.ijfatigue.2024.108718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on strain-controlled thermomechanical fatigue (TMF) experiments, this study conducts a comprehensive analysis of the TMF behavior of AISI H13 hot work die steel. Moreover, a life prediction model for the TMF behavior of AISI H13 steel has been developed and validated. The experimental results reveal that, under the in-phase (IP) and out-of-phase (OP) TMF conditions, the stress–strain response curves of AISI H13 steel under different mechanical strain amplitudes exhibits the similar evolution tendency. However, it is worth noting that in the stable TMF cycle, the hysteresis loop area is enlarged with the increase of the number of cycles, which can be attributed to the cyclic softening characteristics of the AISI H13 steel under cyclic thermomechanical loading. When examining different TMF conditions, it is found that at higher strain amplitudes and under OP TMF conditions, the hysteresis loop area significantly expands, leading to a substantial reduction in the TMF life of AISI H13 steel. From a microstructural perspective, the thermal–mechanical coupling effect makes the recovery of martensitic matrix and the coarsening of carbide precipitation, which substantiates the deterioration of mechanical properties of AISI H13 steel. Finally, a modified Ostergren model by integrating the hysteresis loop area has been developed to assess the TMF life of AISI H13 steel under complex thermomechanical loading conditions, and this refined model exhibits strong agreement with experimental data. An evaluation using scatter band shows that the predicted TMF life of AISI H13 steel are within 1.2 times the experimental values, which illustrates a high reliability and validity.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"192 \",\"pages\":\"Article 108718\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324005772\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005772","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Fatigue damage and life prediction for AISI H13 steel under cyclic thermomechanical loading
Based on strain-controlled thermomechanical fatigue (TMF) experiments, this study conducts a comprehensive analysis of the TMF behavior of AISI H13 hot work die steel. Moreover, a life prediction model for the TMF behavior of AISI H13 steel has been developed and validated. The experimental results reveal that, under the in-phase (IP) and out-of-phase (OP) TMF conditions, the stress–strain response curves of AISI H13 steel under different mechanical strain amplitudes exhibits the similar evolution tendency. However, it is worth noting that in the stable TMF cycle, the hysteresis loop area is enlarged with the increase of the number of cycles, which can be attributed to the cyclic softening characteristics of the AISI H13 steel under cyclic thermomechanical loading. When examining different TMF conditions, it is found that at higher strain amplitudes and under OP TMF conditions, the hysteresis loop area significantly expands, leading to a substantial reduction in the TMF life of AISI H13 steel. From a microstructural perspective, the thermal–mechanical coupling effect makes the recovery of martensitic matrix and the coarsening of carbide precipitation, which substantiates the deterioration of mechanical properties of AISI H13 steel. Finally, a modified Ostergren model by integrating the hysteresis loop area has been developed to assess the TMF life of AISI H13 steel under complex thermomechanical loading conditions, and this refined model exhibits strong agreement with experimental data. An evaluation using scatter band shows that the predicted TMF life of AISI H13 steel are within 1.2 times the experimental values, which illustrates a high reliability and validity.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.