基于核磁共振的人体血浆中低密度脂蛋白胆固醇亚组分预测模型的质量、独特性和因果关系

IF 7 2区 医学 Q1 BIOLOGY
Yongxin Ye , Bo Markussen , Søren Balling Engelsen , Bekzod Khakimov
{"title":"基于核磁共振的人体血浆中低密度脂蛋白胆固醇亚组分预测模型的质量、独特性和因果关系","authors":"Yongxin Ye ,&nbsp;Bo Markussen ,&nbsp;Søren Balling Engelsen ,&nbsp;Bekzod Khakimov","doi":"10.1016/j.compbiomed.2024.109379","DOIUrl":null,"url":null,"abstract":"<div><div>Low-density lipoprotein (LDL) cholesterol (<em>chol</em>) subfractions are risk biomarkers for cardiovascular diseases (CVD). A reference analysis, ultracentrifugation (UC), is laborious and may be replaced with a rapid prediction using proton NMR spectra of human blood plasma. However, the quality and uniqueness of these prediction models of biologically related subfractions remains unknown. This study, using two independent cohorts (n = 277), investigates the inter-correlations between LDL cholesterol in the main fraction and five subfractions, as well as the independence of their NMR-based prediction models. The results reveal that the prediction models utilize both shared and unique spectral information from the NMR spectra to determine concentrations of LDL subfractions. Analysis of variance contributions for prediction and causality assessments demonstrate that the NMR spectra contain unique predictive information for the LDL1<em>chol</em>, LDL2<em>chol</em>, and LDL5<em>chol</em> subfractions. In contrast, the spectral signatures for LDL3<em>chol</em> and LDL4<em>chol</em> are either insufficient or confounded. Our findings indicate that these five CVD biomarkers represent two independent clusters, reflecting their biosynthetic pathways, and confirm the presence of causal relationships between certain LDL <em>chol</em> subfractions. This highlights the importance of employing caution when interpreting the concentrations of specific LDL subfractions as standalone biomarkers for CVD risk.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"Article 109379"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The quality, uniqueness, and causality of NMR-based prediction models for low-density lipoprotein cholesterol subfractions in human blood plasma\",\"authors\":\"Yongxin Ye ,&nbsp;Bo Markussen ,&nbsp;Søren Balling Engelsen ,&nbsp;Bekzod Khakimov\",\"doi\":\"10.1016/j.compbiomed.2024.109379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low-density lipoprotein (LDL) cholesterol (<em>chol</em>) subfractions are risk biomarkers for cardiovascular diseases (CVD). A reference analysis, ultracentrifugation (UC), is laborious and may be replaced with a rapid prediction using proton NMR spectra of human blood plasma. However, the quality and uniqueness of these prediction models of biologically related subfractions remains unknown. This study, using two independent cohorts (n = 277), investigates the inter-correlations between LDL cholesterol in the main fraction and five subfractions, as well as the independence of their NMR-based prediction models. The results reveal that the prediction models utilize both shared and unique spectral information from the NMR spectra to determine concentrations of LDL subfractions. Analysis of variance contributions for prediction and causality assessments demonstrate that the NMR spectra contain unique predictive information for the LDL1<em>chol</em>, LDL2<em>chol</em>, and LDL5<em>chol</em> subfractions. In contrast, the spectral signatures for LDL3<em>chol</em> and LDL4<em>chol</em> are either insufficient or confounded. Our findings indicate that these five CVD biomarkers represent two independent clusters, reflecting their biosynthetic pathways, and confirm the presence of causal relationships between certain LDL <em>chol</em> subfractions. This highlights the importance of employing caution when interpreting the concentrations of specific LDL subfractions as standalone biomarkers for CVD risk.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"184 \",\"pages\":\"Article 109379\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524014641\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524014641","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

低密度脂蛋白胆固醇(LDL)亚组分是心血管疾病(CVD)的风险生物标志物。超速离心(UC)是一种费力的参考分析方法,可以用人体血浆的质子核磁共振光谱进行快速预测来代替。然而,这些生物相关亚组分预测模型的质量和独特性仍然未知。本研究使用两个独立队列(n = 277),调查了主馏分和五个亚馏分中低密度脂蛋白胆固醇之间的相互关系,以及它们基于核磁共振预测模型的独立性。结果显示,预测模型利用核磁共振光谱中共享和独特的光谱信息来确定低密度脂蛋白亚组分的浓度。预测和因果关系评估的方差贡献分析表明,核磁共振光谱包含 LDL1 胆固醇、LDL2 胆固醇和 LDL5 胆固醇亚组分的独特预测信息。相比之下,LDL3 胆固醇和 LDL4 胆固醇的光谱特征要么不足,要么存在混淆。我们的研究结果表明,这五种心血管疾病生物标志物代表了两个独立的群组,反映了它们的生物合成途径,并证实了某些低密度脂蛋白胆固醇亚组分之间存在因果关系。这强调了在将特定低密度脂蛋白亚组分的浓度作为心血管疾病风险的独立生物标志物进行解释时必须谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The quality, uniqueness, and causality of NMR-based prediction models for low-density lipoprotein cholesterol subfractions in human blood plasma
Low-density lipoprotein (LDL) cholesterol (chol) subfractions are risk biomarkers for cardiovascular diseases (CVD). A reference analysis, ultracentrifugation (UC), is laborious and may be replaced with a rapid prediction using proton NMR spectra of human blood plasma. However, the quality and uniqueness of these prediction models of biologically related subfractions remains unknown. This study, using two independent cohorts (n = 277), investigates the inter-correlations between LDL cholesterol in the main fraction and five subfractions, as well as the independence of their NMR-based prediction models. The results reveal that the prediction models utilize both shared and unique spectral information from the NMR spectra to determine concentrations of LDL subfractions. Analysis of variance contributions for prediction and causality assessments demonstrate that the NMR spectra contain unique predictive information for the LDL1chol, LDL2chol, and LDL5chol subfractions. In contrast, the spectral signatures for LDL3chol and LDL4chol are either insufficient or confounded. Our findings indicate that these five CVD biomarkers represent two independent clusters, reflecting their biosynthetic pathways, and confirm the presence of causal relationships between certain LDL chol subfractions. This highlights the importance of employing caution when interpreting the concentrations of specific LDL subfractions as standalone biomarkers for CVD risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信