Hao Zhang , Yingchun Cui , Shi Zong , Shaocong Chen , Lijie Ma , Weixuan Wang , Xuejiao Wang , Shenggui Li , Chenguang Liu
{"title":"南极贾汪海山(虎克海脊)铁锰沉淀物的起源和临界金属富集:地球化学和同位素证据","authors":"Hao Zhang , Yingchun Cui , Shi Zong , Shaocong Chen , Lijie Ma , Weixuan Wang , Xuejiao Wang , Shenggui Li , Chenguang Liu","doi":"10.1016/j.margeo.2024.107435","DOIUrl":null,"url":null,"abstract":"<div><div>Marine ferromanganese precipitates are globally recognized as significant minerals resources within the world's oceans. Our study presents an analysis of isotopic geochemistry of ferromanganese precipitates from the Jiawang Seamount in Antarctica, comparing them with typical low-temperature hydrothermal ferromanganese precipitates found in oceanic settings. We discuss the genesis of ferromanganese precipitates and the characteristics of critical metals' enrichment. The chemical compositions imply that the ferromanganese precipitates from Jiawang Seamount are of hydrothermal origin. However, the enrichment characteristics of critical metals such as Co, Ni, Cu, Zn, Mo, Pb, REE, aside from Fe and Mn, are not conspicuous and possess relatively inferior potential compared with typical hydrothermal ferromanganese precipitates in the oceans. These critical metals originate from hydrothermal fluid, and their enrichment is positively correlated with the precipitation process of Mn oxides. The Sr isotope results reveal that the formation of ferromanganese precipitates underwent at least two distinct periods of hydrothermal activity, respectively at 9.5 Ma and 15–16 Ma. The chemical composition and Nd - Pb isotopic characteristics of ferromanganese precipitates suggest that the hydrothermal fluid composition is substantially similar during different periods. The formation of ferromanganese precipitates from Jiawang Seamount is closely related to regional hydrothermal activities that accompany basin development. Based on the Sr isotope estimation of hydrothermal activity, the Bransfield Strait basin is at least older than 16 Ma.</div></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"479 ","pages":"Article 107435"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origin and critical metals enrichment of ferromanganese precipitates from Jiawang Seamount (Hook Ridge) Antarctica: Geochemistry and isotope evidence\",\"authors\":\"Hao Zhang , Yingchun Cui , Shi Zong , Shaocong Chen , Lijie Ma , Weixuan Wang , Xuejiao Wang , Shenggui Li , Chenguang Liu\",\"doi\":\"10.1016/j.margeo.2024.107435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Marine ferromanganese precipitates are globally recognized as significant minerals resources within the world's oceans. Our study presents an analysis of isotopic geochemistry of ferromanganese precipitates from the Jiawang Seamount in Antarctica, comparing them with typical low-temperature hydrothermal ferromanganese precipitates found in oceanic settings. We discuss the genesis of ferromanganese precipitates and the characteristics of critical metals' enrichment. The chemical compositions imply that the ferromanganese precipitates from Jiawang Seamount are of hydrothermal origin. However, the enrichment characteristics of critical metals such as Co, Ni, Cu, Zn, Mo, Pb, REE, aside from Fe and Mn, are not conspicuous and possess relatively inferior potential compared with typical hydrothermal ferromanganese precipitates in the oceans. These critical metals originate from hydrothermal fluid, and their enrichment is positively correlated with the precipitation process of Mn oxides. The Sr isotope results reveal that the formation of ferromanganese precipitates underwent at least two distinct periods of hydrothermal activity, respectively at 9.5 Ma and 15–16 Ma. The chemical composition and Nd - Pb isotopic characteristics of ferromanganese precipitates suggest that the hydrothermal fluid composition is substantially similar during different periods. The formation of ferromanganese precipitates from Jiawang Seamount is closely related to regional hydrothermal activities that accompany basin development. Based on the Sr isotope estimation of hydrothermal activity, the Bransfield Strait basin is at least older than 16 Ma.</div></div>\",\"PeriodicalId\":18229,\"journal\":{\"name\":\"Marine Geology\",\"volume\":\"479 \",\"pages\":\"Article 107435\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025322724002196\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724002196","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Origin and critical metals enrichment of ferromanganese precipitates from Jiawang Seamount (Hook Ridge) Antarctica: Geochemistry and isotope evidence
Marine ferromanganese precipitates are globally recognized as significant minerals resources within the world's oceans. Our study presents an analysis of isotopic geochemistry of ferromanganese precipitates from the Jiawang Seamount in Antarctica, comparing them with typical low-temperature hydrothermal ferromanganese precipitates found in oceanic settings. We discuss the genesis of ferromanganese precipitates and the characteristics of critical metals' enrichment. The chemical compositions imply that the ferromanganese precipitates from Jiawang Seamount are of hydrothermal origin. However, the enrichment characteristics of critical metals such as Co, Ni, Cu, Zn, Mo, Pb, REE, aside from Fe and Mn, are not conspicuous and possess relatively inferior potential compared with typical hydrothermal ferromanganese precipitates in the oceans. These critical metals originate from hydrothermal fluid, and their enrichment is positively correlated with the precipitation process of Mn oxides. The Sr isotope results reveal that the formation of ferromanganese precipitates underwent at least two distinct periods of hydrothermal activity, respectively at 9.5 Ma and 15–16 Ma. The chemical composition and Nd - Pb isotopic characteristics of ferromanganese precipitates suggest that the hydrothermal fluid composition is substantially similar during different periods. The formation of ferromanganese precipitates from Jiawang Seamount is closely related to regional hydrothermal activities that accompany basin development. Based on the Sr isotope estimation of hydrothermal activity, the Bransfield Strait basin is at least older than 16 Ma.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.