Agung Surya Wibowo , Osphanie Mentari Primadianti , Hilal Tayara , Kil To Chong
{"title":"GATNM:药物和类药物分枝杆菌细胞壁渗透性的注意力图神经网络模型","authors":"Agung Surya Wibowo , Osphanie Mentari Primadianti , Hilal Tayara , Kil To Chong","doi":"10.1016/j.chemolab.2024.105265","DOIUrl":null,"url":null,"abstract":"<div><div><em>Mycobacterium tuberculosis</em> cell wall has complexity and unusual organization. These conditions make the nutrients and antibiotics difficult to penetrate this wall which affects the low activity of several antimycobacterial drugs in mycobacteria cells. Based on this information, the cell wall permeability prediction in some compounds becomes important and would help develop novel antitubercular drugs. Recently, there have been many predictions helped by computational technology using the Simplified Molecular Input Line Entry System (SMILES) input drug compounds. In this study, we applied computational technology to predict the permeability of cell walls to some compounds or drugs. We evaluated several common machine learning models for their ability to predict cell wall permeability. However, none of these models achieved satisfactory performance. We investigated a Graph with Attention Neural Network (GATNN) model to address this challenge. In the case of permeability detection, to the best of our knowledge, the GATNN model is considered a new approach to improve the prediction performance of the penetration ability of some compounds to the cell wall of the mycobacterial. Additionally, we optimized the accuracy value to get the best hyperparameter and the best model by Optuna. After getting the optimal model, by using the benchmark dataset, this model has slightly increased the performance over the previous model in accuracy and specificity to 78.9% and 81.5%. As a complementary, we also provided an ensemble model and generated the interpretability of the model. The code and materials of all experiments in this paper can be accessed freely at this link: <span><span>https://github.com/asw1982/MTbPrediction</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"256 ","pages":"Article 105265"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GATNM: Graph with Attention Neural Network Model for Mycobacterial Cell Wall Permeability of Drugs and Drug-like Compounds\",\"authors\":\"Agung Surya Wibowo , Osphanie Mentari Primadianti , Hilal Tayara , Kil To Chong\",\"doi\":\"10.1016/j.chemolab.2024.105265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Mycobacterium tuberculosis</em> cell wall has complexity and unusual organization. These conditions make the nutrients and antibiotics difficult to penetrate this wall which affects the low activity of several antimycobacterial drugs in mycobacteria cells. Based on this information, the cell wall permeability prediction in some compounds becomes important and would help develop novel antitubercular drugs. Recently, there have been many predictions helped by computational technology using the Simplified Molecular Input Line Entry System (SMILES) input drug compounds. In this study, we applied computational technology to predict the permeability of cell walls to some compounds or drugs. We evaluated several common machine learning models for their ability to predict cell wall permeability. However, none of these models achieved satisfactory performance. We investigated a Graph with Attention Neural Network (GATNN) model to address this challenge. In the case of permeability detection, to the best of our knowledge, the GATNN model is considered a new approach to improve the prediction performance of the penetration ability of some compounds to the cell wall of the mycobacterial. Additionally, we optimized the accuracy value to get the best hyperparameter and the best model by Optuna. After getting the optimal model, by using the benchmark dataset, this model has slightly increased the performance over the previous model in accuracy and specificity to 78.9% and 81.5%. As a complementary, we also provided an ensemble model and generated the interpretability of the model. The code and materials of all experiments in this paper can be accessed freely at this link: <span><span>https://github.com/asw1982/MTbPrediction</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"256 \",\"pages\":\"Article 105265\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924002053\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924002053","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
GATNM: Graph with Attention Neural Network Model for Mycobacterial Cell Wall Permeability of Drugs and Drug-like Compounds
Mycobacterium tuberculosis cell wall has complexity and unusual organization. These conditions make the nutrients and antibiotics difficult to penetrate this wall which affects the low activity of several antimycobacterial drugs in mycobacteria cells. Based on this information, the cell wall permeability prediction in some compounds becomes important and would help develop novel antitubercular drugs. Recently, there have been many predictions helped by computational technology using the Simplified Molecular Input Line Entry System (SMILES) input drug compounds. In this study, we applied computational technology to predict the permeability of cell walls to some compounds or drugs. We evaluated several common machine learning models for their ability to predict cell wall permeability. However, none of these models achieved satisfactory performance. We investigated a Graph with Attention Neural Network (GATNN) model to address this challenge. In the case of permeability detection, to the best of our knowledge, the GATNN model is considered a new approach to improve the prediction performance of the penetration ability of some compounds to the cell wall of the mycobacterial. Additionally, we optimized the accuracy value to get the best hyperparameter and the best model by Optuna. After getting the optimal model, by using the benchmark dataset, this model has slightly increased the performance over the previous model in accuracy and specificity to 78.9% and 81.5%. As a complementary, we also provided an ensemble model and generated the interpretability of the model. The code and materials of all experiments in this paper can be accessed freely at this link: https://github.com/asw1982/MTbPrediction.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.