Tae Hoon Lee, Jun Kyu Jang, Byung Kwan Lee, Wan-Ni Wu, Zachary P. Smith, Ho Bum Park
{"title":"具有内在微孔的聚合物超薄薄膜的异常结构变化和气体传输特性","authors":"Tae Hoon Lee, Jun Kyu Jang, Byung Kwan Lee, Wan-Ni Wu, Zachary P. Smith, Ho Bum Park","doi":"10.1021/acs.macromol.4c01712","DOIUrl":null,"url":null,"abstract":"Solution-processable polymers of intrinsic microporosity (PIMs) have been explored as a next-generation material for the synthesis of CO<sub>2</sub> capture membranes. Herein, we highlight the critical need for understanding the transition from bulk PIM materials (50–150 μm) to their thin films (<3 μm). 6FDA-DAM and PIM-1 were chosen as archetypal PIMs, and their thin-film composite (TFC) membranes were prepared via a spin-coating method. Interestingly, the PIM-based TFC membranes always exhibited lower gas permeabilities compared to the model predictions based on their bulk films. Moreover, such deviations became more pronounced by reducing the selective layer thickness to several tens of nanometers. Two-dimensional grazing-incidence wide-angle X-ray scattering (2D GIWAXS) analyses reveal that the PIM thin films significantly differ from those of bulk films by showing thickness-dependent anisotropic microstructures potentially due to fast solvent evaporation and confinement effects during film preparation. Also, physical aging significantly affects the microstructures and the CO<sub>2</sub> capture performance of the aged PIM films, which should be decoupled from the effects of film thickness.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"8 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalous Structural Changes and Gas Transport Properties in Ultrathin Films of Polymers of Intrinsic Microporosity\",\"authors\":\"Tae Hoon Lee, Jun Kyu Jang, Byung Kwan Lee, Wan-Ni Wu, Zachary P. Smith, Ho Bum Park\",\"doi\":\"10.1021/acs.macromol.4c01712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solution-processable polymers of intrinsic microporosity (PIMs) have been explored as a next-generation material for the synthesis of CO<sub>2</sub> capture membranes. Herein, we highlight the critical need for understanding the transition from bulk PIM materials (50–150 μm) to their thin films (<3 μm). 6FDA-DAM and PIM-1 were chosen as archetypal PIMs, and their thin-film composite (TFC) membranes were prepared via a spin-coating method. Interestingly, the PIM-based TFC membranes always exhibited lower gas permeabilities compared to the model predictions based on their bulk films. Moreover, such deviations became more pronounced by reducing the selective layer thickness to several tens of nanometers. Two-dimensional grazing-incidence wide-angle X-ray scattering (2D GIWAXS) analyses reveal that the PIM thin films significantly differ from those of bulk films by showing thickness-dependent anisotropic microstructures potentially due to fast solvent evaporation and confinement effects during film preparation. Also, physical aging significantly affects the microstructures and the CO<sub>2</sub> capture performance of the aged PIM films, which should be decoupled from the effects of film thickness.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.4c01712\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01712","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Anomalous Structural Changes and Gas Transport Properties in Ultrathin Films of Polymers of Intrinsic Microporosity
Solution-processable polymers of intrinsic microporosity (PIMs) have been explored as a next-generation material for the synthesis of CO2 capture membranes. Herein, we highlight the critical need for understanding the transition from bulk PIM materials (50–150 μm) to their thin films (<3 μm). 6FDA-DAM and PIM-1 were chosen as archetypal PIMs, and their thin-film composite (TFC) membranes were prepared via a spin-coating method. Interestingly, the PIM-based TFC membranes always exhibited lower gas permeabilities compared to the model predictions based on their bulk films. Moreover, such deviations became more pronounced by reducing the selective layer thickness to several tens of nanometers. Two-dimensional grazing-incidence wide-angle X-ray scattering (2D GIWAXS) analyses reveal that the PIM thin films significantly differ from those of bulk films by showing thickness-dependent anisotropic microstructures potentially due to fast solvent evaporation and confinement effects during film preparation. Also, physical aging significantly affects the microstructures and the CO2 capture performance of the aged PIM films, which should be decoupled from the effects of film thickness.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.