纯钛和钛铝合金中 CRSS 的推导

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL
Daegun You, Orcun Koray Celebi, Ahmed Sameer Khan Mohammed, Ashley Bucsek, Huseyin Sehitoglu
{"title":"纯钛和钛铝合金中 CRSS 的推导","authors":"Daegun You, Orcun Koray Celebi, Ahmed Sameer Khan Mohammed, Ashley Bucsek, Huseyin Sehitoglu","doi":"10.1016/j.ijplas.2024.104187","DOIUrl":null,"url":null,"abstract":"The work focuses on the determination of the critical resolved shear stress (CRSS) in titanium (Ti) and titanium-aluminum (Ti-Al) alloys, influenced by an array of factors such as non-symmetric fault energies and minimum energy paths, dislocation core-widths, short-range order (SRO) effects which alter the local atomic environment, and tension-compression (T-C) asymmetry affected by intermittent slip motion. To address these multifaceted complexities, an advanced theory has been developed, offering an in-depth understanding of the mechanisms underlying slip behavior. The active slip systems in these materials are basal, prismatic, and pyramidal planes, with the latter involving both <span><span><math><mrow is=\"true\"><mo is=\"true\">〈</mo><mi is=\"true\">a</mi><mo is=\"true\">〉</mo></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">〈</mo><mi is=\"true\">a</mi><mo is=\"true\">〉</mo></mrow></math></script></span> and <span><span><math><mrow is=\"true\"><mo is=\"true\">〈</mo><mrow is=\"true\"><mi is=\"true\">c</mi><mo is=\"true\" linebreak=\"badbreak\">+</mo><mi is=\"true\">a</mi></mrow><mo is=\"true\">〉</mo></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">〈</mo><mrow is=\"true\"><mi is=\"true\">c</mi><mo linebreak=\"badbreak\" is=\"true\">+</mo><mi is=\"true\">a</mi></mrow><mo is=\"true\">〉</mo></mrow></math></script></span> dislocations. Each slip system is characterized by distinct Wigner-Seitz cell configurations for misfit energy calculations, varying partial dislocation separation distances, and unique dislocation trajectories—all critical to precise CRSS calculations. The theoretical CRSS results were validated against a comprehensive range of experimental data, demonstrating a strong agreement and underscoring the model's efficacy.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"132 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Derivation of CRSS in pure Ti and Ti-Al Alloys\",\"authors\":\"Daegun You, Orcun Koray Celebi, Ahmed Sameer Khan Mohammed, Ashley Bucsek, Huseyin Sehitoglu\",\"doi\":\"10.1016/j.ijplas.2024.104187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work focuses on the determination of the critical resolved shear stress (CRSS) in titanium (Ti) and titanium-aluminum (Ti-Al) alloys, influenced by an array of factors such as non-symmetric fault energies and minimum energy paths, dislocation core-widths, short-range order (SRO) effects which alter the local atomic environment, and tension-compression (T-C) asymmetry affected by intermittent slip motion. To address these multifaceted complexities, an advanced theory has been developed, offering an in-depth understanding of the mechanisms underlying slip behavior. The active slip systems in these materials are basal, prismatic, and pyramidal planes, with the latter involving both <span><span><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">〈</mo><mi is=\\\"true\\\">a</mi><mo is=\\\"true\\\">〉</mo></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">〈</mo><mi is=\\\"true\\\">a</mi><mo is=\\\"true\\\">〉</mo></mrow></math></script></span> and <span><span><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">〈</mo><mrow is=\\\"true\\\"><mi is=\\\"true\\\">c</mi><mo is=\\\"true\\\" linebreak=\\\"badbreak\\\">+</mo><mi is=\\\"true\\\">a</mi></mrow><mo is=\\\"true\\\">〉</mo></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">〈</mo><mrow is=\\\"true\\\"><mi is=\\\"true\\\">c</mi><mo linebreak=\\\"badbreak\\\" is=\\\"true\\\">+</mo><mi is=\\\"true\\\">a</mi></mrow><mo is=\\\"true\\\">〉</mo></mrow></math></script></span> dislocations. Each slip system is characterized by distinct Wigner-Seitz cell configurations for misfit energy calculations, varying partial dislocation separation distances, and unique dislocation trajectories—all critical to precise CRSS calculations. The theoretical CRSS results were validated against a comprehensive range of experimental data, demonstrating a strong agreement and underscoring the model's efficacy.\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijplas.2024.104187\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2024.104187","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的重点是确定钛(Ti)和钛铝(Ti-Al)合金中的临界分辨剪切应力(CRSS),它受到一系列因素的影响,例如非对称断层能量和最小能量路径、位错核心宽度、改变局部原子环境的短程有序(SRO)效应以及受间歇滑移运动影响的拉伸-压缩(T-C)不对称。为了解决这些多方面的复杂问题,我们开发了一种先进的理论,以深入了解滑移行为的基本机制。这些材料中的活跃滑移系统包括基面、棱柱面和金字塔面,后者涉及〈a〉〈a〉和〈c+a〉〈c+a〉位错。每种滑移系统都具有不同的 Wigner-Seitz 单元配置(用于错配能计算)、不同的部分位错分离距离和独特的位错轨迹--所有这些对于精确的 CRSS 计算都至关重要。CRSS 的理论结果与一系列实验数据进行了验证,结果表明两者非常吻合,并强调了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Derivation of CRSS in pure Ti and Ti-Al Alloys
The work focuses on the determination of the critical resolved shear stress (CRSS) in titanium (Ti) and titanium-aluminum (Ti-Al) alloys, influenced by an array of factors such as non-symmetric fault energies and minimum energy paths, dislocation core-widths, short-range order (SRO) effects which alter the local atomic environment, and tension-compression (T-C) asymmetry affected by intermittent slip motion. To address these multifaceted complexities, an advanced theory has been developed, offering an in-depth understanding of the mechanisms underlying slip behavior. The active slip systems in these materials are basal, prismatic, and pyramidal planes, with the latter involving both a and c+a dislocations. Each slip system is characterized by distinct Wigner-Seitz cell configurations for misfit energy calculations, varying partial dislocation separation distances, and unique dislocation trajectories—all critical to precise CRSS calculations. The theoretical CRSS results were validated against a comprehensive range of experimental data, demonstrating a strong agreement and underscoring the model's efficacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信