ViViEchoformer:预测射血分数的深度视频调节器

Taymaz Akan, Sait Alp, Md Shenuarin Bhuiyan, Tarek Helmy, A Wayne Orr, Md Mostafizur Rahman Bhuiyan, Steven A Conrad, John A Vanchiere, Christopher G Kevil, Mohammad Alfrad Nobel Bhuiyan
{"title":"ViViEchoformer:预测射血分数的深度视频调节器","authors":"Taymaz Akan, Sait Alp, Md Shenuarin Bhuiyan, Tarek Helmy, A Wayne Orr, Md Mostafizur Rahman Bhuiyan, Steven A Conrad, John A Vanchiere, Christopher G Kevil, Mohammad Alfrad Nobel Bhuiyan","doi":"10.1007/s10278-024-01336-y","DOIUrl":null,"url":null,"abstract":"<p><p>Heart disease is the leading cause of death worldwide, and cardiac function as measured by ejection fraction (EF) is an important determinant of outcomes, making accurate measurement a critical parameter in PT evaluation. Echocardiograms are commonly used for measuring EF, but human interpretation has limitations in terms of intra- and inter-observer (or reader) variance. Deep learning (DL) has driven a resurgence in machine learning, leading to advancements in medical applications. We introduce the ViViEchoformer DL approach, which uses a video vision transformer to directly regress the left ventricular function (LVEF) from echocardiogram videos. The study used a dataset of 10,030 apical-4-chamber echocardiography videos from patients at Stanford University Hospital. The model accurately captures spatial information and preserves inter-frame relationships by extracting spatiotemporal tokens from video input, allowing for accurate, fully automatic EF predictions that aid human assessment and analysis. The ViViEchoformer's prediction of ejection fraction has a mean absolute error of 6.14%, a root mean squared error of 8.4%, a mean squared log error of 0.04, and an <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> of 0.55. ViViEchoformer predicted heart failure with reduced ejection fraction (HFrEF) with an area under the curve of 0.83 and a classification accuracy of 87 using a standard threshold of less than 50% ejection fraction. Our video-based method provides precise left ventricular function quantification, offering a reliable alternative to human evaluation and establishing a fundamental basis for echocardiogram interpretation.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ViViEchoformer: Deep Video Regressor Predicting Ejection Fraction.\",\"authors\":\"Taymaz Akan, Sait Alp, Md Shenuarin Bhuiyan, Tarek Helmy, A Wayne Orr, Md Mostafizur Rahman Bhuiyan, Steven A Conrad, John A Vanchiere, Christopher G Kevil, Mohammad Alfrad Nobel Bhuiyan\",\"doi\":\"10.1007/s10278-024-01336-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart disease is the leading cause of death worldwide, and cardiac function as measured by ejection fraction (EF) is an important determinant of outcomes, making accurate measurement a critical parameter in PT evaluation. Echocardiograms are commonly used for measuring EF, but human interpretation has limitations in terms of intra- and inter-observer (or reader) variance. Deep learning (DL) has driven a resurgence in machine learning, leading to advancements in medical applications. We introduce the ViViEchoformer DL approach, which uses a video vision transformer to directly regress the left ventricular function (LVEF) from echocardiogram videos. The study used a dataset of 10,030 apical-4-chamber echocardiography videos from patients at Stanford University Hospital. The model accurately captures spatial information and preserves inter-frame relationships by extracting spatiotemporal tokens from video input, allowing for accurate, fully automatic EF predictions that aid human assessment and analysis. The ViViEchoformer's prediction of ejection fraction has a mean absolute error of 6.14%, a root mean squared error of 8.4%, a mean squared log error of 0.04, and an <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> of 0.55. ViViEchoformer predicted heart failure with reduced ejection fraction (HFrEF) with an area under the curve of 0.83 and a classification accuracy of 87 using a standard threshold of less than 50% ejection fraction. Our video-based method provides precise left ventricular function quantification, offering a reliable alternative to human evaluation and establishing a fundamental basis for echocardiogram interpretation.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-024-01336-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01336-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心脏病是导致全球死亡的主要原因,而以射血分数(EF)衡量的心脏功能是影响预后的重要决定因素,因此精确测量是 PT 评估的关键参数。超声心动图通常用于测量射血分数,但人工解读存在观察者(或读者)内部和观察者之间的差异。深度学习(DL)推动了机器学习的复苏,从而促进了医疗应用的发展。我们介绍了 ViViEchoformer DL 方法,它使用视频视觉转换器直接回归超声心动图视频中的左心室功能(LVEF)。研究使用了斯坦福大学医院患者的 10030 个心尖四腔超声心动图视频数据集。该模型通过从视频输入中提取时空标记,准确捕捉空间信息并保留帧间关系,从而实现准确、全自动的 EF 预测,为人工评估和分析提供帮助。ViViEchoformer 预测射血分数的平均绝对误差为 6.14%,平均平方根误差为 8.4%,平均平方对数误差为 0.04,R 2 为 0.55。ViViEchoformer 预测射血分数降低型心力衰竭(HFrEF)的曲线下面积为 0.83,以射血分数低于 50% 为标准阈值,分类准确率为 87。我们基于视频的方法能精确量化左心室功能,为人工评估提供了可靠的替代方案,并为超声心动图解读奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ViViEchoformer: Deep Video Regressor Predicting Ejection Fraction.

Heart disease is the leading cause of death worldwide, and cardiac function as measured by ejection fraction (EF) is an important determinant of outcomes, making accurate measurement a critical parameter in PT evaluation. Echocardiograms are commonly used for measuring EF, but human interpretation has limitations in terms of intra- and inter-observer (or reader) variance. Deep learning (DL) has driven a resurgence in machine learning, leading to advancements in medical applications. We introduce the ViViEchoformer DL approach, which uses a video vision transformer to directly regress the left ventricular function (LVEF) from echocardiogram videos. The study used a dataset of 10,030 apical-4-chamber echocardiography videos from patients at Stanford University Hospital. The model accurately captures spatial information and preserves inter-frame relationships by extracting spatiotemporal tokens from video input, allowing for accurate, fully automatic EF predictions that aid human assessment and analysis. The ViViEchoformer's prediction of ejection fraction has a mean absolute error of 6.14%, a root mean squared error of 8.4%, a mean squared log error of 0.04, and an R 2 of 0.55. ViViEchoformer predicted heart failure with reduced ejection fraction (HFrEF) with an area under the curve of 0.83 and a classification accuracy of 87 using a standard threshold of less than 50% ejection fraction. Our video-based method provides precise left ventricular function quantification, offering a reliable alternative to human evaluation and establishing a fundamental basis for echocardiogram interpretation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信