瞬时受体电位 a1b 调节发育中斑马鱼的原始生殖细胞数量和性别分化。

IF 1.7 3区 农林科学 Q2 FISHERIES
Xiaoting Gong, Qianqian Yan, Liangbiao Chen
{"title":"瞬时受体电位 a1b 调节发育中斑马鱼的原始生殖细胞数量和性别分化。","authors":"Xiaoting Gong, Qianqian Yan, Liangbiao Chen","doi":"10.1111/jfb.16005","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature is a leading environmental factor determining the sex ratio of some animal populations, such as fish, amphibians, and reptiles. However, the underlying mechanism by which temperature affects gender is still poorly understood. Transient receptor potential a1b (Trpa1b) belongs to the ion channel family of transient receptor potentials and exhibits dual thermosensitivity to heat and cold. In this study, we have unveiled a novel function of the trpa1b gene. Zebrafish generated through clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 with Trpa1b-null manifest a male-biased sex ratio. The quantity of primordial germ cells (PGCs) in zebrafish is closely linked to gender determination and gonadal development. Yet the role of the trpa1b gene in zebrafish reproductive development remains unexplored in the literature. Our investigation revealed a significant reduction in PGCs in Trpa1b mutant zebrafish compared to their wild-type counterparts 24-h postfertilization (hpf). Transcriptome sequencing of tissues near the reproductive crest of embryos at 1.25 days postfertilization (dpf) revealed differential changes in PGC-related marker genes and genes related to sperm cell development and differentiation. The relative expression of ddx4 and sycp3 genes was significantly downregulated, whereas amh was significantly upregulated at 20 dpf in trpa1b<sup>-/-</sup> zebrafish. The results of this study provide valuable insights and references for studying the molecular mechanism of sex determination in zebrafish. Undoubtedly, these results will further enhance our understanding of gender differentiation and gonadal development in fish and other vertebrates.</p>","PeriodicalId":15794,"journal":{"name":"Journal of fish biology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient receptor potential a1b regulates primordial germ cell numbers and sex differentiation in developing zebrafish.\",\"authors\":\"Xiaoting Gong, Qianqian Yan, Liangbiao Chen\",\"doi\":\"10.1111/jfb.16005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Temperature is a leading environmental factor determining the sex ratio of some animal populations, such as fish, amphibians, and reptiles. However, the underlying mechanism by which temperature affects gender is still poorly understood. Transient receptor potential a1b (Trpa1b) belongs to the ion channel family of transient receptor potentials and exhibits dual thermosensitivity to heat and cold. In this study, we have unveiled a novel function of the trpa1b gene. Zebrafish generated through clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 with Trpa1b-null manifest a male-biased sex ratio. The quantity of primordial germ cells (PGCs) in zebrafish is closely linked to gender determination and gonadal development. Yet the role of the trpa1b gene in zebrafish reproductive development remains unexplored in the literature. Our investigation revealed a significant reduction in PGCs in Trpa1b mutant zebrafish compared to their wild-type counterparts 24-h postfertilization (hpf). Transcriptome sequencing of tissues near the reproductive crest of embryos at 1.25 days postfertilization (dpf) revealed differential changes in PGC-related marker genes and genes related to sperm cell development and differentiation. The relative expression of ddx4 and sycp3 genes was significantly downregulated, whereas amh was significantly upregulated at 20 dpf in trpa1b<sup>-/-</sup> zebrafish. The results of this study provide valuable insights and references for studying the molecular mechanism of sex determination in zebrafish. Undoubtedly, these results will further enhance our understanding of gender differentiation and gonadal development in fish and other vertebrates.</p>\",\"PeriodicalId\":15794,\"journal\":{\"name\":\"Journal of fish biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of fish biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/jfb.16005\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fish biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jfb.16005","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

温度是决定鱼类、两栖动物和爬行动物等一些动物种群性别比例的主要环境因素。然而,人们对温度影响性别的内在机制仍然知之甚少。瞬态受体电位 a1b(Trpa1b)属于瞬态受体电位离子通道家族,对冷热具有双重热敏感性。在这项研究中,我们揭示了 trpa1b 基因的一种新功能。通过簇状规则间隔短回文重复序列(CRISPR)/Cas9产生的Trpa1b无效斑马鱼表现出雄性偏向的性别比例。斑马鱼原始生殖细胞(PGC)的数量与性别决定和性腺发育密切相关。然而,trpa1b基因在斑马鱼生殖发育中的作用在文献中仍未得到探讨。我们的研究发现,与野生型斑马鱼相比,Trpa1b突变体斑马鱼受精后24小时(hpf)的PGC明显减少。对受精后 1.25 天(dpf)胚胎生殖嵴附近组织的转录组测序显示,PGC 相关标记基因和精子细胞发育与分化相关基因发生了不同程度的变化。在trpa1b-/-斑马鱼20 dpf时,ddx4和sycp3基因的相对表达显著下调,而amh则显著上调。本研究的结果为研究斑马鱼性别决定的分子机制提供了宝贵的见解和参考。毫无疑问,这些结果将进一步加深我们对鱼类和其他脊椎动物性别分化和性腺发育的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient receptor potential a1b regulates primordial germ cell numbers and sex differentiation in developing zebrafish.

Temperature is a leading environmental factor determining the sex ratio of some animal populations, such as fish, amphibians, and reptiles. However, the underlying mechanism by which temperature affects gender is still poorly understood. Transient receptor potential a1b (Trpa1b) belongs to the ion channel family of transient receptor potentials and exhibits dual thermosensitivity to heat and cold. In this study, we have unveiled a novel function of the trpa1b gene. Zebrafish generated through clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 with Trpa1b-null manifest a male-biased sex ratio. The quantity of primordial germ cells (PGCs) in zebrafish is closely linked to gender determination and gonadal development. Yet the role of the trpa1b gene in zebrafish reproductive development remains unexplored in the literature. Our investigation revealed a significant reduction in PGCs in Trpa1b mutant zebrafish compared to their wild-type counterparts 24-h postfertilization (hpf). Transcriptome sequencing of tissues near the reproductive crest of embryos at 1.25 days postfertilization (dpf) revealed differential changes in PGC-related marker genes and genes related to sperm cell development and differentiation. The relative expression of ddx4 and sycp3 genes was significantly downregulated, whereas amh was significantly upregulated at 20 dpf in trpa1b-/- zebrafish. The results of this study provide valuable insights and references for studying the molecular mechanism of sex determination in zebrafish. Undoubtedly, these results will further enhance our understanding of gender differentiation and gonadal development in fish and other vertebrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of fish biology
Journal of fish biology 生物-海洋与淡水生物学
CiteScore
4.00
自引率
10.00%
发文量
292
审稿时长
3 months
期刊介绍: The Journal of Fish Biology is a leading international journal for scientists engaged in all aspects of fishes and fisheries research, both fresh water and marine. The journal publishes high-quality papers relevant to the central theme of fish biology and aims to bring together under one cover an overall picture of the research in progress and to provide international communication among researchers in many disciplines with a common interest in the biology of fish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信