原儿茶酸通过调节 NRF2 信号通路缓解肝脏脂肪毒性和脂肪变性中的铁变态反应

IF 5.3 2区 医学 Q2 CELL BIOLOGY
Yetong Feng, Mengjiao Shi, Yi Zhang, Xinyan Li, Liangwen Yan, Jiayi Xu, Chenyue Liu, Miaomiao Li, Fengyun Bai, Fenyue Yuan, Ying Sun, Rongrong Liu, Yaping Zhao, Lan Yang, Yinggang Zhang, Ying Guo, Jian Zhang, Rui Zhou, Pengfei Liu
{"title":"原儿茶酸通过调节 NRF2 信号通路缓解肝脏脂肪毒性和脂肪变性中的铁变态反应","authors":"Yetong Feng, Mengjiao Shi, Yi Zhang, Xinyan Li, Liangwen Yan, Jiayi Xu, Chenyue Liu, Miaomiao Li, Fengyun Bai, Fenyue Yuan, Ying Sun, Rongrong Liu, Yaping Zhao, Lan Yang, Yinggang Zhang, Ying Guo, Jian Zhang, Rui Zhou, Pengfei Liu","doi":"10.1007/s10565-024-09953-7","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis represents a newly programmed cell death, and the process is usually accompanied with iron-dependent lipid peroxidation. Importantly, ferroptosis is implicated in a myriad of diseases. Recent literature suggests a potential position of ferroptosis in the pathogenesis of metabolic dysfunction-associated fatty liver disease (MAFLD), the most widespread liver ailment worldwide. Intriguingly, several functional genes and metabolic pathways central to ferroptosis are regulated by nuclear factor erythroid-derived 2-like 2 (NRF2). In current work, we aim to identify protocatechuic acid (PCA), a primary metabolite of antioxidant polyphenols, as a potent NRF2 activator and ferroptosis inhibitor in the hepatic lipotoxicity and steatosis models. Herein, both NRF2<sup>+/+</sup> and NRF2<sup>-/-</sup> cell lines and mice were used to analyze the importance of NRF2 in PCA function, and hepatic lipotoxicity and steatosis models were induced by palmitic acid and high-fat diet respectively. Our results indicated that ferroptosis was mitigated by PCA intervention in hepatic cells. Furthermore, PCA exhibited therapeutic efficacy against ferroptosis, as well as hepatic lipotoxicity and steatosis. The protective role of PCA was predominantly mediated through NRF2 activation, potentially elucidating a pivotal mechanism underlying PCA's therapeutic impact on MAFLD. Additionally, the augmented mitochondrial TCA cycle activity observed in hepatic lipotoxicity and steatosis models was ameliorated by PCA, in part via NRF2-dependent pathways, further bolstering PCA's anti-ferroptosis properties. Collectively, our findings underscore PCA's potential in alleviating hepatic ferroptosis, lipotoxicity and steatosis via inducing activation of NRF2 signaling pathway, offering a promising strategy for the therapy of MAFLD as well as related lipid metabolic disorders.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"104"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599353/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protocatechuic acid relieves ferroptosis in hepatic lipotoxicity and steatosis via regulating NRF2 signaling pathway.\",\"authors\":\"Yetong Feng, Mengjiao Shi, Yi Zhang, Xinyan Li, Liangwen Yan, Jiayi Xu, Chenyue Liu, Miaomiao Li, Fengyun Bai, Fenyue Yuan, Ying Sun, Rongrong Liu, Yaping Zhao, Lan Yang, Yinggang Zhang, Ying Guo, Jian Zhang, Rui Zhou, Pengfei Liu\",\"doi\":\"10.1007/s10565-024-09953-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis represents a newly programmed cell death, and the process is usually accompanied with iron-dependent lipid peroxidation. Importantly, ferroptosis is implicated in a myriad of diseases. Recent literature suggests a potential position of ferroptosis in the pathogenesis of metabolic dysfunction-associated fatty liver disease (MAFLD), the most widespread liver ailment worldwide. Intriguingly, several functional genes and metabolic pathways central to ferroptosis are regulated by nuclear factor erythroid-derived 2-like 2 (NRF2). In current work, we aim to identify protocatechuic acid (PCA), a primary metabolite of antioxidant polyphenols, as a potent NRF2 activator and ferroptosis inhibitor in the hepatic lipotoxicity and steatosis models. Herein, both NRF2<sup>+/+</sup> and NRF2<sup>-/-</sup> cell lines and mice were used to analyze the importance of NRF2 in PCA function, and hepatic lipotoxicity and steatosis models were induced by palmitic acid and high-fat diet respectively. Our results indicated that ferroptosis was mitigated by PCA intervention in hepatic cells. Furthermore, PCA exhibited therapeutic efficacy against ferroptosis, as well as hepatic lipotoxicity and steatosis. The protective role of PCA was predominantly mediated through NRF2 activation, potentially elucidating a pivotal mechanism underlying PCA's therapeutic impact on MAFLD. Additionally, the augmented mitochondrial TCA cycle activity observed in hepatic lipotoxicity and steatosis models was ameliorated by PCA, in part via NRF2-dependent pathways, further bolstering PCA's anti-ferroptosis properties. Collectively, our findings underscore PCA's potential in alleviating hepatic ferroptosis, lipotoxicity and steatosis via inducing activation of NRF2 signaling pathway, offering a promising strategy for the therapy of MAFLD as well as related lipid metabolic disorders.</p>\",\"PeriodicalId\":9672,\"journal\":{\"name\":\"Cell Biology and Toxicology\",\"volume\":\"40 1\",\"pages\":\"104\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599353/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology and Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10565-024-09953-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09953-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铁蜕变是一种新的程序性细胞死亡,这一过程通常伴随着铁依赖性脂质过氧化反应。重要的是,铁变性与多种疾病有关。最近的文献表明,铁变态反应在代谢功能障碍相关性脂肪肝(MAFLD)的发病机制中具有潜在的地位,而代谢功能障碍相关性脂肪肝是全球最普遍的肝脏疾病。耐人寻味的是,铁变态反应的几个核心功能基因和代谢途径受核因子红细胞衍生 2-like 2(NRF2)的调控。在目前的工作中,我们旨在确定原儿茶酸(PCA)--一种抗氧化多酚的主要代谢产物--在肝脏脂肪毒性和脂肪变性模型中是一种有效的 NRF2 激活剂和铁变态反应抑制剂。本文利用NRF2+/+和NRF2-/-细胞系和小鼠来分析NRF2在PCA功能中的重要性,并分别用棕榈酸和高脂饮食诱导肝脏脂肪毒性和脂肪变性模型。我们的研究结果表明,PCA 对肝细胞的干预可减轻铁变态反应。此外,PCA 还对铁蛋白沉积、肝脏脂肪毒性和脂肪变性具有疗效。PCA 的保护作用主要是通过激活 NRF2 介导的,这可能阐明了 PCA 对 MAFLD 产生治疗影响的关键机制。此外,在肝脏脂肪毒性和脂肪变性模型中观察到的线粒体 TCA 循环活性增强的现象在 PCA 的作用下得到了改善,这部分是通过 NRF2 依赖性途径实现的,从而进一步增强了 PCA 的抗脂肪变性特性。总之,我们的研究结果强调了五氯苯甲醚在通过诱导激活 NRF2 信号通路缓解肝脏铁变态、脂肪毒性和脂肪变性方面的潜力,为治疗 MAFLD 以及相关脂质代谢紊乱提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protocatechuic acid relieves ferroptosis in hepatic lipotoxicity and steatosis via regulating NRF2 signaling pathway.

Ferroptosis represents a newly programmed cell death, and the process is usually accompanied with iron-dependent lipid peroxidation. Importantly, ferroptosis is implicated in a myriad of diseases. Recent literature suggests a potential position of ferroptosis in the pathogenesis of metabolic dysfunction-associated fatty liver disease (MAFLD), the most widespread liver ailment worldwide. Intriguingly, several functional genes and metabolic pathways central to ferroptosis are regulated by nuclear factor erythroid-derived 2-like 2 (NRF2). In current work, we aim to identify protocatechuic acid (PCA), a primary metabolite of antioxidant polyphenols, as a potent NRF2 activator and ferroptosis inhibitor in the hepatic lipotoxicity and steatosis models. Herein, both NRF2+/+ and NRF2-/- cell lines and mice were used to analyze the importance of NRF2 in PCA function, and hepatic lipotoxicity and steatosis models were induced by palmitic acid and high-fat diet respectively. Our results indicated that ferroptosis was mitigated by PCA intervention in hepatic cells. Furthermore, PCA exhibited therapeutic efficacy against ferroptosis, as well as hepatic lipotoxicity and steatosis. The protective role of PCA was predominantly mediated through NRF2 activation, potentially elucidating a pivotal mechanism underlying PCA's therapeutic impact on MAFLD. Additionally, the augmented mitochondrial TCA cycle activity observed in hepatic lipotoxicity and steatosis models was ameliorated by PCA, in part via NRF2-dependent pathways, further bolstering PCA's anti-ferroptosis properties. Collectively, our findings underscore PCA's potential in alleviating hepatic ferroptosis, lipotoxicity and steatosis via inducing activation of NRF2 signaling pathway, offering a promising strategy for the therapy of MAFLD as well as related lipid metabolic disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信