改进的二原子分子能量方程和热函数:广义分数导数法

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
E. S. Eyube, C. R. Makasson, E. Omugbe, C. A. Onate, E. P. Inyang, A. M. Tahir, J. U. Ojar, S. D. Najoji
{"title":"改进的二原子分子能量方程和热函数:广义分数导数法","authors":"E. S. Eyube,&nbsp;C. R. Makasson,&nbsp;E. Omugbe,&nbsp;C. A. Onate,&nbsp;E. P. Inyang,&nbsp;A. M. Tahir,&nbsp;J. U. Ojar,&nbsp;S. D. Najoji","doi":"10.1007/s00894-024-06208-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>This work presents analytical expressions for ro-vibrational energy models of diatomic molecules by introducing fractional parameters to improve molecular interaction analysis. Thermodynamic models, including Helmholtz free energy, mean thermal energy, entropy, and isochoric heat capacity, are formulated for diatomic molecules such as CO (X <sup>1</sup>∑<sup>+</sup>), Cs<sub>2</sub> (3 <sup>3</sup>∑<sub>g</sub><sup>+</sup>), K<sub>2</sub> (X <sup>1</sup>∑<sub>g</sub><sup>+</sup>), <sup>7</sup>Li<sub>2</sub> (6 <sup>1</sup>Π<sub>u</sub>), <sup>7</sup>Li<sub>2</sub> (1 <sup>3</sup>Δ<sub>g</sub>), Na<sub>2</sub> (5 <sup>1</sup>Δ<sub>g</sub>), Na<sub>2</sub> (C(2) <sup>1</sup>Π<sub>u</sub>), and NaK (c <sup>3</sup>∑<sup>+</sup>). The incorporation of fractional parameters improves predictive accuracy for vibrational energies, as shown by reductions in percentage average absolute deviations from 0.5511 to 0.2185% for CO. Findings indicate a linear decrease in Helmholtz free energy and an initial increase in heat capacity with rising temperature, providing valuable insights for characterizing materials and optimizing molecular processes in chemistry, material science, and chemical engineering. The results obtained show strong agreement with established theoretical predictions and experimental data, validating the robustness and applicability of the proposed models.</p><h3>Methods</h3><p>The energy equations are derived by solving the radial Schrödinger equation for a variant of the Tietz potential using the generalized fractional Nikiforov-Uvarov (GFNU) method in addition to a Pekeris-type approximation for the centrifugal term. The canonical partition function is derived using the modified Poisson series formula, which serves as a basis for calculating other thermodynamic functions. All computations are carried out using MATLAB programming software.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00894-024-06208-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Improved energy equations and thermal functions for diatomic molecules: a generalized fractional derivative approach\",\"authors\":\"E. S. Eyube,&nbsp;C. R. Makasson,&nbsp;E. Omugbe,&nbsp;C. A. Onate,&nbsp;E. P. Inyang,&nbsp;A. M. Tahir,&nbsp;J. U. Ojar,&nbsp;S. D. Najoji\",\"doi\":\"10.1007/s00894-024-06208-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>This work presents analytical expressions for ro-vibrational energy models of diatomic molecules by introducing fractional parameters to improve molecular interaction analysis. Thermodynamic models, including Helmholtz free energy, mean thermal energy, entropy, and isochoric heat capacity, are formulated for diatomic molecules such as CO (X <sup>1</sup>∑<sup>+</sup>), Cs<sub>2</sub> (3 <sup>3</sup>∑<sub>g</sub><sup>+</sup>), K<sub>2</sub> (X <sup>1</sup>∑<sub>g</sub><sup>+</sup>), <sup>7</sup>Li<sub>2</sub> (6 <sup>1</sup>Π<sub>u</sub>), <sup>7</sup>Li<sub>2</sub> (1 <sup>3</sup>Δ<sub>g</sub>), Na<sub>2</sub> (5 <sup>1</sup>Δ<sub>g</sub>), Na<sub>2</sub> (C(2) <sup>1</sup>Π<sub>u</sub>), and NaK (c <sup>3</sup>∑<sup>+</sup>). The incorporation of fractional parameters improves predictive accuracy for vibrational energies, as shown by reductions in percentage average absolute deviations from 0.5511 to 0.2185% for CO. Findings indicate a linear decrease in Helmholtz free energy and an initial increase in heat capacity with rising temperature, providing valuable insights for characterizing materials and optimizing molecular processes in chemistry, material science, and chemical engineering. The results obtained show strong agreement with established theoretical predictions and experimental data, validating the robustness and applicability of the proposed models.</p><h3>Methods</h3><p>The energy equations are derived by solving the radial Schrödinger equation for a variant of the Tietz potential using the generalized fractional Nikiforov-Uvarov (GFNU) method in addition to a Pekeris-type approximation for the centrifugal term. The canonical partition function is derived using the modified Poisson series formula, which serves as a basis for calculating other thermodynamic functions. All computations are carried out using MATLAB programming software.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"30 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00894-024-06208-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06208-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06208-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景这项工作通过引入分数参数来改进分子相互作用分析,从而提出了双原子分子的罗振能模型的分析表达式。热力学模型包括亥姆霍兹自由能、平均热能、熵和等热容、为 CO (X 1∑+)、Cs2 (3 3∑g+)、K2 (X 1∑g+)、7Li2 (6 1Πu)、7Li2 (1 3Δg)、Na2 (5 1Δg)、Na2 (C(2) 1Πu)和 NaK (c 3∑+)等二原子分子建立了热力学模型。分数参数的加入提高了振动能量的预测精度,这体现在 CO 的平均绝对偏差百分比从 0.5511% 降至 0.2185%。研究结果表明,随着温度的升高,亥姆霍兹自由能呈线性下降,热容量开始增加,这为化学、材料科学和化学工程领域的材料表征和分子过程优化提供了宝贵的见解。所获得的结果与已有的理论预测和实验数据非常吻合,验证了所提模型的稳健性和适用性。方法能量方程是通过使用广义分数尼基福罗夫-乌瓦洛夫(GFNU)方法以及离心项的 Pekeris 型近似法求解 Tietz 势变体的径向薛定谔方程得出的。使用修正的泊松级数公式推导出典型分配函数,并以此为基础计算其他热力学函数。所有计算均使用 MATLAB 编程软件进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved energy equations and thermal functions for diatomic molecules: a generalized fractional derivative approach

Context

This work presents analytical expressions for ro-vibrational energy models of diatomic molecules by introducing fractional parameters to improve molecular interaction analysis. Thermodynamic models, including Helmholtz free energy, mean thermal energy, entropy, and isochoric heat capacity, are formulated for diatomic molecules such as CO (X 1+), Cs2 (3 3g+), K2 (X 1g+), 7Li2 (6 1Πu), 7Li2 (1 3Δg), Na2 (5 1Δg), Na2 (C(2) 1Πu), and NaK (c 3+). The incorporation of fractional parameters improves predictive accuracy for vibrational energies, as shown by reductions in percentage average absolute deviations from 0.5511 to 0.2185% for CO. Findings indicate a linear decrease in Helmholtz free energy and an initial increase in heat capacity with rising temperature, providing valuable insights for characterizing materials and optimizing molecular processes in chemistry, material science, and chemical engineering. The results obtained show strong agreement with established theoretical predictions and experimental data, validating the robustness and applicability of the proposed models.

Methods

The energy equations are derived by solving the radial Schrödinger equation for a variant of the Tietz potential using the generalized fractional Nikiforov-Uvarov (GFNU) method in addition to a Pekeris-type approximation for the centrifugal term. The canonical partition function is derived using the modified Poisson series formula, which serves as a basis for calculating other thermodynamic functions. All computations are carried out using MATLAB programming software.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信