论图的盖顶点的符号幂的深度稳定性指数

IF 0.3 Q4 MATHEMATICS
S. A. Seyed Fakhari, S. Yassemi
{"title":"论图的盖顶点的符号幂的深度稳定性指数","authors":"S. A. Seyed Fakhari,&nbsp;S. Yassemi","doi":"10.1007/s40306-024-00550-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a graph with <i>n</i> vertices and let <span>\\(S=\\mathbb {K}[x_1,\\dots ,x_n]\\)</span> be the polynomial ring in <i>n</i> variables over a field <span>\\(\\mathbb {K}\\)</span>. Assume that <i>I</i>(<i>G</i>) and <i>J</i>(<i>G</i>) denote the edge ideal and the cover ideal of <i>G</i>, respectively. We provide a combinatorial upper bound for the index of depth stability of symbolic powers of <i>J</i>(<i>G</i>). As a consequence, we compute the depth of symbolic powers of cover ideals of fully clique-whiskered graphs. Meanwhile, we determine a class of graphs <i>G</i> with the property that the Castelnuovo–Mumford regularity of <i>S</i>/<i>I</i>(<i>G</i>) is equal to the induced matching number of <i>G</i>.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"49 3","pages":"367 - 376"},"PeriodicalIF":0.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Index of Depth Stability of Symbolic Powers of Cover Ideals of Graphs\",\"authors\":\"S. A. Seyed Fakhari,&nbsp;S. Yassemi\",\"doi\":\"10.1007/s40306-024-00550-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a graph with <i>n</i> vertices and let <span>\\\\(S=\\\\mathbb {K}[x_1,\\\\dots ,x_n]\\\\)</span> be the polynomial ring in <i>n</i> variables over a field <span>\\\\(\\\\mathbb {K}\\\\)</span>. Assume that <i>I</i>(<i>G</i>) and <i>J</i>(<i>G</i>) denote the edge ideal and the cover ideal of <i>G</i>, respectively. We provide a combinatorial upper bound for the index of depth stability of symbolic powers of <i>J</i>(<i>G</i>). As a consequence, we compute the depth of symbolic powers of cover ideals of fully clique-whiskered graphs. Meanwhile, we determine a class of graphs <i>G</i> with the property that the Castelnuovo–Mumford regularity of <i>S</i>/<i>I</i>(<i>G</i>) is equal to the induced matching number of <i>G</i>.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"49 3\",\"pages\":\"367 - 376\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-024-00550-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-024-00550-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是一个有 n 个顶点的图,让 \(S=\mathbb {K}[x_1,\dots ,x_n]\) 是域 \(\mathbb {K}\) 上 n 个变量的多项式环。假设 I(G) 和 J(G) 分别表示 G 的边理想和盖理想。我们为 J(G) 的符号幂的深度稳定性指数提供了一个组合上界。因此,我们计算了完全簇须图的盖理想的符号幂深度。同时,我们确定了一类图 G,其性质是 S/I(G)的卡斯特诺沃-蒙福德正则性等于 G 的诱导匹配数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Index of Depth Stability of Symbolic Powers of Cover Ideals of Graphs

Let G be a graph with n vertices and let \(S=\mathbb {K}[x_1,\dots ,x_n]\) be the polynomial ring in n variables over a field \(\mathbb {K}\). Assume that I(G) and J(G) denote the edge ideal and the cover ideal of G, respectively. We provide a combinatorial upper bound for the index of depth stability of symbolic powers of J(G). As a consequence, we compute the depth of symbolic powers of cover ideals of fully clique-whiskered graphs. Meanwhile, we determine a class of graphs G with the property that the Castelnuovo–Mumford regularity of S/I(G) is equal to the induced matching number of G.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
23
期刊介绍: Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信