{"title":"论图的盖顶点的符号幂的深度稳定性指数","authors":"S. A. Seyed Fakhari, S. Yassemi","doi":"10.1007/s40306-024-00550-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a graph with <i>n</i> vertices and let <span>\\(S=\\mathbb {K}[x_1,\\dots ,x_n]\\)</span> be the polynomial ring in <i>n</i> variables over a field <span>\\(\\mathbb {K}\\)</span>. Assume that <i>I</i>(<i>G</i>) and <i>J</i>(<i>G</i>) denote the edge ideal and the cover ideal of <i>G</i>, respectively. We provide a combinatorial upper bound for the index of depth stability of symbolic powers of <i>J</i>(<i>G</i>). As a consequence, we compute the depth of symbolic powers of cover ideals of fully clique-whiskered graphs. Meanwhile, we determine a class of graphs <i>G</i> with the property that the Castelnuovo–Mumford regularity of <i>S</i>/<i>I</i>(<i>G</i>) is equal to the induced matching number of <i>G</i>.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"49 3","pages":"367 - 376"},"PeriodicalIF":0.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Index of Depth Stability of Symbolic Powers of Cover Ideals of Graphs\",\"authors\":\"S. A. Seyed Fakhari, S. Yassemi\",\"doi\":\"10.1007/s40306-024-00550-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a graph with <i>n</i> vertices and let <span>\\\\(S=\\\\mathbb {K}[x_1,\\\\dots ,x_n]\\\\)</span> be the polynomial ring in <i>n</i> variables over a field <span>\\\\(\\\\mathbb {K}\\\\)</span>. Assume that <i>I</i>(<i>G</i>) and <i>J</i>(<i>G</i>) denote the edge ideal and the cover ideal of <i>G</i>, respectively. We provide a combinatorial upper bound for the index of depth stability of symbolic powers of <i>J</i>(<i>G</i>). As a consequence, we compute the depth of symbolic powers of cover ideals of fully clique-whiskered graphs. Meanwhile, we determine a class of graphs <i>G</i> with the property that the Castelnuovo–Mumford regularity of <i>S</i>/<i>I</i>(<i>G</i>) is equal to the induced matching number of <i>G</i>.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"49 3\",\"pages\":\"367 - 376\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-024-00550-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-024-00550-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 G 是一个有 n 个顶点的图,让 \(S=\mathbb {K}[x_1,\dots ,x_n]\) 是域 \(\mathbb {K}\) 上 n 个变量的多项式环。假设 I(G) 和 J(G) 分别表示 G 的边理想和盖理想。我们为 J(G) 的符号幂的深度稳定性指数提供了一个组合上界。因此,我们计算了完全簇须图的盖理想的符号幂深度。同时,我们确定了一类图 G,其性质是 S/I(G)的卡斯特诺沃-蒙福德正则性等于 G 的诱导匹配数。
On the Index of Depth Stability of Symbolic Powers of Cover Ideals of Graphs
Let G be a graph with n vertices and let \(S=\mathbb {K}[x_1,\dots ,x_n]\) be the polynomial ring in n variables over a field \(\mathbb {K}\). Assume that I(G) and J(G) denote the edge ideal and the cover ideal of G, respectively. We provide a combinatorial upper bound for the index of depth stability of symbolic powers of J(G). As a consequence, we compute the depth of symbolic powers of cover ideals of fully clique-whiskered graphs. Meanwhile, we determine a class of graphs G with the property that the Castelnuovo–Mumford regularity of S/I(G) is equal to the induced matching number of G.
期刊介绍:
Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.