表面重力波力学临界点高阶非线性薛定谔方程的精确求解与混沌分析

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2024-11-27 DOI:10.1007/s12043-024-02853-9
Chuanqi Li
{"title":"表面重力波力学临界点高阶非线性薛定谔方程的精确求解与混沌分析","authors":"Chuanqi Li","doi":"10.1007/s12043-024-02853-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the higher-order nonlinear Schrödinger equation of surface gravity wave evolution at the critical point <span>\\(kh\\approx 1.363\\)</span>. We use dynamic systems to analyse the types of solutions to this equation. Nineteen analytic chirped solutions are obtained by using the chirped wave transformation and polynomial complete discriminant system method. Finally, we add different disturbance terms to the equation and observe chaotic behaviour in the system. These results show that under different parameter conditions the frequency of the surface gravity wave changes as the amplitude changes. Therefore, the chirp <span>\\(\\delta \\omega \\)</span> shows a variant of patterns such as singular and periodic structures.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"98 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise solution and chaos analysis of a higher-order nonlinear Schrödinger equation in the critical point of surface gravity wave mechanics\",\"authors\":\"Chuanqi Li\",\"doi\":\"10.1007/s12043-024-02853-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the higher-order nonlinear Schrödinger equation of surface gravity wave evolution at the critical point <span>\\\\(kh\\\\approx 1.363\\\\)</span>. We use dynamic systems to analyse the types of solutions to this equation. Nineteen analytic chirped solutions are obtained by using the chirped wave transformation and polynomial complete discriminant system method. Finally, we add different disturbance terms to the equation and observe chaotic behaviour in the system. These results show that under different parameter conditions the frequency of the surface gravity wave changes as the amplitude changes. Therefore, the chirp <span>\\\\(\\\\delta \\\\omega \\\\)</span> shows a variant of patterns such as singular and periodic structures.</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"98 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-024-02853-9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02853-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了临界点(kh\approx 1.363\ )处表面重力波演化的高阶非线性薛定谔方程。我们使用动态系统来分析该方程的解的类型。通过使用啁啾波变换和多项式完全判别式系统方法,我们得到了 19 个解析啁啾解。最后,我们在方程中加入了不同的干扰项,并观察到了系统中的混沌行为。这些结果表明,在不同的参数条件下,表面重力波的频率会随着振幅的变化而变化。因此,啁啾(Δ \omega \)呈现出奇异和周期性结构等多种形态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precise solution and chaos analysis of a higher-order nonlinear Schrödinger equation in the critical point of surface gravity wave mechanics

In this paper, we study the higher-order nonlinear Schrödinger equation of surface gravity wave evolution at the critical point \(kh\approx 1.363\). We use dynamic systems to analyse the types of solutions to this equation. Nineteen analytic chirped solutions are obtained by using the chirped wave transformation and polynomial complete discriminant system method. Finally, we add different disturbance terms to the equation and observe chaotic behaviour in the system. These results show that under different parameter conditions the frequency of the surface gravity wave changes as the amplitude changes. Therefore, the chirp \(\delta \omega \) shows a variant of patterns such as singular and periodic structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信