一些经典不等式的新改进

IF 0.9 Q2 MATHEMATICS
Abdelmajid Gourty, Mohamed Amine Ighachane, Fuad Kittaneh
{"title":"一些经典不等式的新改进","authors":"Abdelmajid Gourty,&nbsp;Mohamed Amine Ighachane,&nbsp;Fuad Kittaneh","doi":"10.1007/s13370-024-01218-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish an inequality for scalars, which we then apply to refine some classical inequalities for inner product and numerical raduis. For example, we establish that for any <span>\\(\\mathcal {E}\\in \\mathcal {B}(\\mathcal {H}),\\)</span> <span>\\(u,v\\in \\mathcal {H},\\)</span> and <span>\\(0\\le \\theta \\le 1\\)</span>, </p><div><div><span>$$\\begin{aligned} |\\langle \\mathcal {E} u,v\\rangle |^2&amp;\\le \\mathcal {U}_{(n,\\xi )}\\left( \\eta ,|\\langle \\mathcal {E}u,v\\rangle |,\\sqrt{\\left\\langle |\\mathcal {E}|^{2 \\theta } u,u\\right\\rangle \\left\\langle \\left| \\mathcal {E}^*\\right| ^{2(1-\\theta )} v, v\\right\\rangle }\\right) \\\\ &amp;\\le \\left\\langle |\\mathcal {E}|^{2 \\theta } u,u\\right\\rangle \\left\\langle \\left| \\mathcal {E}^*\\right| ^{2(1-\\theta )} v, v\\right\\rangle . \\end{aligned}$$</span></div></div><p>Moreover, we have <span>\\(\\left( \\mathcal {U}_{(n,\\xi )}\\left( \\eta ,|\\langle \\mathcal {E}u,v\\rangle |,\\sqrt{\\left\\langle |\\mathcal {E}|^{2 \\theta } u,u\\right\\rangle \\left\\langle \\left| \\mathcal {E}^*\\right| ^{2(1-\\theta )} v, v\\right\\rangle }\\right) \\right) _{n \\geqslant 0}\\)</span> is an increasing sequence satisfying </p><div><div><span>$$\\begin{aligned} \\lim \\limits _{n \\rightarrow +\\infty } \\mathcal {U}_{(n,\\xi )}\\left( \\eta ,|\\langle \\mathcal {E}u,v\\rangle |,\\sqrt{\\left\\langle |\\mathcal {E}|^{2 \\theta } u,u\\right\\rangle \\left\\langle \\left| \\mathcal {E}^*\\right| ^{2(1-\\theta )} v, v\\right\\rangle }\\right) = \\left\\langle |\\mathcal {E}|^{2 \\theta } u,u\\right\\rangle \\left\\langle \\left| \\mathcal {E}^*\\right| ^{2(1-\\theta )} v, v\\right\\rangle , \\end{aligned}$$</span></div></div><p>which presents a novel refinement of the well-known mixed Schwartz inequality. Our results extend and refine well-established inequalities found in the literature.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New improvements of some classical inequalities\",\"authors\":\"Abdelmajid Gourty,&nbsp;Mohamed Amine Ighachane,&nbsp;Fuad Kittaneh\",\"doi\":\"10.1007/s13370-024-01218-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we establish an inequality for scalars, which we then apply to refine some classical inequalities for inner product and numerical raduis. For example, we establish that for any <span>\\\\(\\\\mathcal {E}\\\\in \\\\mathcal {B}(\\\\mathcal {H}),\\\\)</span> <span>\\\\(u,v\\\\in \\\\mathcal {H},\\\\)</span> and <span>\\\\(0\\\\le \\\\theta \\\\le 1\\\\)</span>, </p><div><div><span>$$\\\\begin{aligned} |\\\\langle \\\\mathcal {E} u,v\\\\rangle |^2&amp;\\\\le \\\\mathcal {U}_{(n,\\\\xi )}\\\\left( \\\\eta ,|\\\\langle \\\\mathcal {E}u,v\\\\rangle |,\\\\sqrt{\\\\left\\\\langle |\\\\mathcal {E}|^{2 \\\\theta } u,u\\\\right\\\\rangle \\\\left\\\\langle \\\\left| \\\\mathcal {E}^*\\\\right| ^{2(1-\\\\theta )} v, v\\\\right\\\\rangle }\\\\right) \\\\\\\\ &amp;\\\\le \\\\left\\\\langle |\\\\mathcal {E}|^{2 \\\\theta } u,u\\\\right\\\\rangle \\\\left\\\\langle \\\\left| \\\\mathcal {E}^*\\\\right| ^{2(1-\\\\theta )} v, v\\\\right\\\\rangle . \\\\end{aligned}$$</span></div></div><p>Moreover, we have <span>\\\\(\\\\left( \\\\mathcal {U}_{(n,\\\\xi )}\\\\left( \\\\eta ,|\\\\langle \\\\mathcal {E}u,v\\\\rangle |,\\\\sqrt{\\\\left\\\\langle |\\\\mathcal {E}|^{2 \\\\theta } u,u\\\\right\\\\rangle \\\\left\\\\langle \\\\left| \\\\mathcal {E}^*\\\\right| ^{2(1-\\\\theta )} v, v\\\\right\\\\rangle }\\\\right) \\\\right) _{n \\\\geqslant 0}\\\\)</span> is an increasing sequence satisfying </p><div><div><span>$$\\\\begin{aligned} \\\\lim \\\\limits _{n \\\\rightarrow +\\\\infty } \\\\mathcal {U}_{(n,\\\\xi )}\\\\left( \\\\eta ,|\\\\langle \\\\mathcal {E}u,v\\\\rangle |,\\\\sqrt{\\\\left\\\\langle |\\\\mathcal {E}|^{2 \\\\theta } u,u\\\\right\\\\rangle \\\\left\\\\langle \\\\left| \\\\mathcal {E}^*\\\\right| ^{2(1-\\\\theta )} v, v\\\\right\\\\rangle }\\\\right) = \\\\left\\\\langle |\\\\mathcal {E}|^{2 \\\\theta } u,u\\\\right\\\\rangle \\\\left\\\\langle \\\\left| \\\\mathcal {E}^*\\\\right| ^{2(1-\\\\theta )} v, v\\\\right\\\\rangle , \\\\end{aligned}$$</span></div></div><p>which presents a novel refinement of the well-known mixed Schwartz inequality. Our results extend and refine well-established inequalities found in the literature.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-024-01218-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01218-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了一个标量不等式,然后应用它来完善一些经典的内积不等式和数值弧度不等式。例如,我们建立了对于任何 \(\mathcal {E}\in \mathcal {B}(\mathcal {H}),\)\(u,v\in \mathcal {H},\) and\(0\le \theta \le 1\), $$\begin{aligned}|/langle \mathcal {E} u,v\rangle |^2&;\le \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle\mathcal{E}u,v\rangle|,\sqrt{left\langle|\mathcal{E}|^{2\theta}u、u\right\rangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\right\rangle }\right) \ &;\u, u\rightrangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\rightrangle .\end{aligned}$Moreover, we have \(\left( \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle \mathcal {E}u,v\rangle |,\sqrt{left/left/langle||^{2(1-theta )} u、u\right\rangle\left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\right\rangle }\right) _{n \geqslant 0}\) 是一个递增序列,满足 $$\begin{aligned}\lim _{n (rightarrow +\infty }\mathcal {U}_{(n,\xi )}\left( \eta ,|\langle\mathcal{E}u,v\rangle|,\sqrt{\left\langle||^{2(1-\theta )} u,u\right\rangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta)}v、v\right\rangle }\right) = \left\langle |\mathcal {E}|^{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\right\rangle , \end{aligned}$$这是对著名的混合施瓦茨不等式的新改进。我们的结果扩展并完善了文献中的既定不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New improvements of some classical inequalities

In this paper, we establish an inequality for scalars, which we then apply to refine some classical inequalities for inner product and numerical raduis. For example, we establish that for any \(\mathcal {E}\in \mathcal {B}(\mathcal {H}),\) \(u,v\in \mathcal {H},\) and \(0\le \theta \le 1\),

$$\begin{aligned} |\langle \mathcal {E} u,v\rangle |^2&\le \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle \mathcal {E}u,v\rangle |,\sqrt{\left\langle |\mathcal {E}|^{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\right\rangle }\right) \\ &\le \left\langle |\mathcal {E}|^{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\right\rangle . \end{aligned}$$

Moreover, we have \(\left( \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle \mathcal {E}u,v\rangle |,\sqrt{\left\langle |\mathcal {E}|^{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\right\rangle }\right) \right) _{n \geqslant 0}\) is an increasing sequence satisfying

$$\begin{aligned} \lim \limits _{n \rightarrow +\infty } \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle \mathcal {E}u,v\rangle |,\sqrt{\left\langle |\mathcal {E}|^{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\right\rangle }\right) = \left\langle |\mathcal {E}|^{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\right\rangle , \end{aligned}$$

which presents a novel refinement of the well-known mixed Schwartz inequality. Our results extend and refine well-established inequalities found in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信