超曲线正则化守恒律系统冲击剖面的谱稳定性

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Johannes Bärlin
{"title":"超曲线正则化守恒律系统冲击剖面的谱稳定性","authors":"Johannes Bärlin","doi":"10.1007/s00205-024-02066-9","DOIUrl":null,"url":null,"abstract":"<div><p>We report a proof that under natural assumptions shock profiles viewed as heteroclinic travelling wave solutions to a hyperbolically regularized system of conservation laws are spectrally stable if the shock amplitude is sufficiently small. This means that an associated Evans function <span>\\(\\mathcal {E}:\\Lambda \\rightarrow \\mathbb {C}\\)</span> with <span>\\(\\Lambda \\subset \\mathbb {C}\\)</span> an open superset of the closed right half plane <span>\\(\\mathbb {H}^+\\equiv \\{\\kappa \\in \\mathbb {C}:\\text {Re}\\,\\kappa \\geqq 0\\}\\)</span> has only one zero, namely, a simple zero at 0. The result is analogous to the one obtained in Freistühler and Szmolyan (Arch Ration Mech Anal 164:287–309, 2002) and Plaza and Zumbrun (Discrete Contin Dyn Syst 10(4):885–924, 2004) for parabolically regularized systems of conservation laws, and also distinctly extends findings on hyperbolic relaxation systems in Mascia and Zumbrun (Partial Differ Equ 34(1–3):119–136, 2009), Plaza and Zumbrun (2004) and Ueda (Math Methods Appl Sci 32(4):419–434, 2009).</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"248 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02066-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Spectral Stability of Shock Profiles for Hyperbolically Regularized Systems of Conservation Laws\",\"authors\":\"Johannes Bärlin\",\"doi\":\"10.1007/s00205-024-02066-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report a proof that under natural assumptions shock profiles viewed as heteroclinic travelling wave solutions to a hyperbolically regularized system of conservation laws are spectrally stable if the shock amplitude is sufficiently small. This means that an associated Evans function <span>\\\\(\\\\mathcal {E}:\\\\Lambda \\\\rightarrow \\\\mathbb {C}\\\\)</span> with <span>\\\\(\\\\Lambda \\\\subset \\\\mathbb {C}\\\\)</span> an open superset of the closed right half plane <span>\\\\(\\\\mathbb {H}^+\\\\equiv \\\\{\\\\kappa \\\\in \\\\mathbb {C}:\\\\text {Re}\\\\,\\\\kappa \\\\geqq 0\\\\}\\\\)</span> has only one zero, namely, a simple zero at 0. The result is analogous to the one obtained in Freistühler and Szmolyan (Arch Ration Mech Anal 164:287–309, 2002) and Plaza and Zumbrun (Discrete Contin Dyn Syst 10(4):885–924, 2004) for parabolically regularized systems of conservation laws, and also distinctly extends findings on hyperbolic relaxation systems in Mascia and Zumbrun (Partial Differ Equ 34(1–3):119–136, 2009), Plaza and Zumbrun (2004) and Ueda (Math Methods Appl Sci 32(4):419–434, 2009).</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"248 6\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-024-02066-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02066-9\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02066-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了一个证明,即在自然假设下,如果冲击振幅足够小,被视为超正则化守恒律系统的异次元行波解的冲击剖面是光谱稳定的。这意味着相关的埃文斯函数((\mathcal {E}:\Lambda\rightarrow\mathbb {C}\)与(\Lambda\subset\mathbb {C}\)是封闭的右半平面(\mathbb {H}^+\equiv \{\kappa \ in \mathbb {C}.)的开放超集:\)只有一个零,即在 0 处的简单零。这一结果类似于 Freistühler 和 Szmolyan (Arch Ration Mech Anal 164:287-309, 2002) 以及 Plaza 和 Zumbrun (Discrete Contin Dyn Syst 10(4):885-924, 2004)中对抛物线正则化守恒定律系统的研究成果,同时也明显扩展了 Mascia 和 Zumbrun (Partial Differ Equ 34(1-3):119-136, 2009)、Plaza 和 Zumbrun (2004) 以及 Ueda (Math Methods Appl Sci 32(4):419-434, 2009) 中对双曲松弛系统的研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Stability of Shock Profiles for Hyperbolically Regularized Systems of Conservation Laws

We report a proof that under natural assumptions shock profiles viewed as heteroclinic travelling wave solutions to a hyperbolically regularized system of conservation laws are spectrally stable if the shock amplitude is sufficiently small. This means that an associated Evans function \(\mathcal {E}:\Lambda \rightarrow \mathbb {C}\) with \(\Lambda \subset \mathbb {C}\) an open superset of the closed right half plane \(\mathbb {H}^+\equiv \{\kappa \in \mathbb {C}:\text {Re}\,\kappa \geqq 0\}\) has only one zero, namely, a simple zero at 0. The result is analogous to the one obtained in Freistühler and Szmolyan (Arch Ration Mech Anal 164:287–309, 2002) and Plaza and Zumbrun (Discrete Contin Dyn Syst 10(4):885–924, 2004) for parabolically regularized systems of conservation laws, and also distinctly extends findings on hyperbolic relaxation systems in Mascia and Zumbrun (Partial Differ Equ 34(1–3):119–136, 2009), Plaza and Zumbrun (2004) and Ueda (Math Methods Appl Sci 32(4):419–434, 2009).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信