非局部抽象金兹堡-朗道型方程及其应用

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
V. B. Shakhmurov
{"title":"非局部抽象金兹堡-朗道型方程及其应用","authors":"V. B. Shakhmurov","doi":"10.1134/S0040577924110060","DOIUrl":null,"url":null,"abstract":"<p> We study a nonlocal abstract Ginzburg–Landau type equation. The equation includes variable coefficients with convolution terms and an abstract linear operator function <span>\\(A\\)</span> in a Fourier-type Banach space <span>\\(E\\)</span>. For sufficiently smooth initial data, assuming growth conditions for the operator <span>\\(A\\)</span> and the coefficient <span>\\(a\\)</span>, the existence and uniqueness of the solution and the <span>\\(L^p\\)</span> -regularity properties are established. We obtain the existence and uniqueness of the solution, and the regularity of different classes of nonlocal Ginzburg–Landau-type equations by choosing the space <span>\\(E\\)</span> and operator <span>\\(A\\)</span> that occur in a wide variety of physical systems. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"221 2","pages":"1867 - 1881"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocal abstract Ginzburg–Landau-type equations and applications\",\"authors\":\"V. B. Shakhmurov\",\"doi\":\"10.1134/S0040577924110060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study a nonlocal abstract Ginzburg–Landau type equation. The equation includes variable coefficients with convolution terms and an abstract linear operator function <span>\\\\(A\\\\)</span> in a Fourier-type Banach space <span>\\\\(E\\\\)</span>. For sufficiently smooth initial data, assuming growth conditions for the operator <span>\\\\(A\\\\)</span> and the coefficient <span>\\\\(a\\\\)</span>, the existence and uniqueness of the solution and the <span>\\\\(L^p\\\\)</span> -regularity properties are established. We obtain the existence and uniqueness of the solution, and the regularity of different classes of nonlocal Ginzburg–Landau-type equations by choosing the space <span>\\\\(E\\\\)</span> and operator <span>\\\\(A\\\\)</span> that occur in a wide variety of physical systems. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"221 2\",\"pages\":\"1867 - 1881\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924110060\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924110060","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个非局部抽象金兹堡-朗道方程。该方程包括带有卷积项的可变系数和傅里叶型巴拿赫空间中的抽象线性算子函数 \(A\)。对于足够光滑的初始数据,假设算子(A)和系数(a)的增长条件,建立了解的存在性和唯一性以及(L^p\)正则性。我们通过选择各种物理系统中出现的空间 (E\ )和算子 (A\ ),得到了解的存在性和唯一性,以及不同类别的非局部金兹堡-朗道(Ginzburg-Landau)型方程的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlocal abstract Ginzburg–Landau-type equations and applications

We study a nonlocal abstract Ginzburg–Landau type equation. The equation includes variable coefficients with convolution terms and an abstract linear operator function \(A\) in a Fourier-type Banach space \(E\). For sufficiently smooth initial data, assuming growth conditions for the operator \(A\) and the coefficient \(a\), the existence and uniqueness of the solution and the \(L^p\) -regularity properties are established. We obtain the existence and uniqueness of the solution, and the regularity of different classes of nonlocal Ginzburg–Landau-type equations by choosing the space \(E\) and operator \(A\) that occur in a wide variety of physical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信