新型扩展半离散 KP 型系统的考奇矩阵方法

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Hong-juan Tian, A. Silem
{"title":"新型扩展半离散 KP 型系统的考奇矩阵方法","authors":"Hong-juan Tian,&nbsp;A. Silem","doi":"10.1134/S0040577924110096","DOIUrl":null,"url":null,"abstract":"<p> Two novel extended semidiscrete KP-type systems, namely, partial differential–difference systems with one continuous and two discrete variables, are investigated. Introducing an arbitrary function into the Cauchy matrix function or the plane wave factor allows implementing extended integrable systems within the Cauchy matrix approach. We introduce the bilinear <span>\\(D\\Delta^2\\)</span>KP system, the extended <span>\\(D\\Delta^2\\)</span>pKP, <span>\\(D\\Delta^2\\)</span>pmKP, and <span>\\(D\\Delta^2\\)</span>SKP systems, all of which are based on the Cauchy matrix approach. This results in a diversity of solutions for these extended systems as contrasted to the usual multiple soliton solutions. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"221 2","pages":"1929 - 1939"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cauchy matrix approach to novel extended semidiscrete KP-type systems\",\"authors\":\"Hong-juan Tian,&nbsp;A. Silem\",\"doi\":\"10.1134/S0040577924110096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Two novel extended semidiscrete KP-type systems, namely, partial differential–difference systems with one continuous and two discrete variables, are investigated. Introducing an arbitrary function into the Cauchy matrix function or the plane wave factor allows implementing extended integrable systems within the Cauchy matrix approach. We introduce the bilinear <span>\\\\(D\\\\Delta^2\\\\)</span>KP system, the extended <span>\\\\(D\\\\Delta^2\\\\)</span>pKP, <span>\\\\(D\\\\Delta^2\\\\)</span>pmKP, and <span>\\\\(D\\\\Delta^2\\\\)</span>SKP systems, all of which are based on the Cauchy matrix approach. This results in a diversity of solutions for these extended systems as contrasted to the usual multiple soliton solutions. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"221 2\",\"pages\":\"1929 - 1939\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924110096\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924110096","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了两个新颖的扩展半离散 KP 型系统,即具有一个连续变量和两个离散变量的偏微分差分系统。在考奇矩阵函数或平面波因子中引入任意函数,可以在考奇矩阵方法中实现扩展可积分系统。我们介绍了双线性 \(D\Delta^2\)KP 系统、扩展的 \(D\Delta^2\)pKP 系统、 \(D\Delta^2\)pmKP 系统和 \(D\Delta^2\)SKP 系统,所有这些系统都基于考奇矩阵方法。这使得这些扩展系统的解的多样性与通常的多重孤子解形成对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cauchy matrix approach to novel extended semidiscrete KP-type systems

Two novel extended semidiscrete KP-type systems, namely, partial differential–difference systems with one continuous and two discrete variables, are investigated. Introducing an arbitrary function into the Cauchy matrix function or the plane wave factor allows implementing extended integrable systems within the Cauchy matrix approach. We introduce the bilinear \(D\Delta^2\)KP system, the extended \(D\Delta^2\)pKP, \(D\Delta^2\)pmKP, and \(D\Delta^2\)SKP systems, all of which are based on the Cauchy matrix approach. This results in a diversity of solutions for these extended systems as contrasted to the usual multiple soliton solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信