半离散可积分层次结构的二元巴格曼对称性约束和积分几何解

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Yaxin Guan, Xinyue Li, Qiulan Zhao
{"title":"半离散可积分层次结构的二元巴格曼对称性约束和积分几何解","authors":"Yaxin Guan,&nbsp;Xinyue Li,&nbsp;Qiulan Zhao","doi":"10.1134/S0040577924110084","DOIUrl":null,"url":null,"abstract":"<p> We present the binary Bargmann symmetry constraint and algebro-geometric solutions for a semidiscrete integrable hierarchy with a bi-Hamiltonian structure. First, we derive a hierarchy associated with a discrete spectral problem by applying the zero-curvature equation and study its bi-Hamiltonian structure. Then, resorting to the binary Bargmann symmetry constraint for the potentials and eigenfunctions, we decompose the hierarchy into an integrable symplectic map and finite-dimensional integrable Hamiltonian systems. Moreover, with the help of the characteristic polynomial of the Lax matrix, we propose a trigonal curve encompassing two infinite points. On this trigonal curve, we introduce a stationary Baker–Akhiezer function and a meromorphic function, and analyze their asymptotic properties and divisors. Based on these preparations, we obtain algebro-geometric solutions for the hierarchy in terms of the Riemann theta function. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"221 2","pages":"1901 - 1928"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary Bargmann symmetry constraint and algebro-geometric solutions of a semidiscrete integrable hierarchy\",\"authors\":\"Yaxin Guan,&nbsp;Xinyue Li,&nbsp;Qiulan Zhao\",\"doi\":\"10.1134/S0040577924110084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We present the binary Bargmann symmetry constraint and algebro-geometric solutions for a semidiscrete integrable hierarchy with a bi-Hamiltonian structure. First, we derive a hierarchy associated with a discrete spectral problem by applying the zero-curvature equation and study its bi-Hamiltonian structure. Then, resorting to the binary Bargmann symmetry constraint for the potentials and eigenfunctions, we decompose the hierarchy into an integrable symplectic map and finite-dimensional integrable Hamiltonian systems. Moreover, with the help of the characteristic polynomial of the Lax matrix, we propose a trigonal curve encompassing two infinite points. On this trigonal curve, we introduce a stationary Baker–Akhiezer function and a meromorphic function, and analyze their asymptotic properties and divisors. Based on these preparations, we obtain algebro-geometric solutions for the hierarchy in terms of the Riemann theta function. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"221 2\",\"pages\":\"1901 - 1928\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924110084\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924110084","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了具有双哈密尔顿结构的半离散可积分层次结构的二元巴格曼对称约束和几何代数解。首先,我们应用零曲率方程推导出与离散谱问题相关的层次结构,并研究其双哈密顿结构。然后,借助电势和特征函数的二元巴格曼对称约束,我们将层次结构分解为可积分交映射和有限维可积分哈密顿系统。此外,借助拉克斯矩阵的特征多项式,我们提出了一条包含两个无限点的三叉曲线。在这条三叉曲线上,我们引入了一个静止的贝克-阿基泽函数和一个分形函数,并分析了它们的渐近性质和除数。在这些准备工作的基础上,我们用黎曼 Theta 函数得到了层次结构的等距几何解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary Bargmann symmetry constraint and algebro-geometric solutions of a semidiscrete integrable hierarchy

We present the binary Bargmann symmetry constraint and algebro-geometric solutions for a semidiscrete integrable hierarchy with a bi-Hamiltonian structure. First, we derive a hierarchy associated with a discrete spectral problem by applying the zero-curvature equation and study its bi-Hamiltonian structure. Then, resorting to the binary Bargmann symmetry constraint for the potentials and eigenfunctions, we decompose the hierarchy into an integrable symplectic map and finite-dimensional integrable Hamiltonian systems. Moreover, with the help of the characteristic polynomial of the Lax matrix, we propose a trigonal curve encompassing two infinite points. On this trigonal curve, we introduce a stationary Baker–Akhiezer function and a meromorphic function, and analyze their asymptotic properties and divisors. Based on these preparations, we obtain algebro-geometric solutions for the hierarchy in terms of the Riemann theta function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信