{"title":"关于无界域中 div-curl 问题的唯一可解性和解的能量估计","authors":"A. V. Gorshkov","doi":"10.1134/S0040577924110023","DOIUrl":null,"url":null,"abstract":"<p> We study the problem of reconstructing a solenoidal vector field from a vortex function with a no-slip condition on the boundary of an external two-dimensional domain. A solvability criterion is obtained as a condition for the orthogonality of the vortex function to harmonic functions. We also obtain some estimates of the solution in the spaces <span>\\(L_2\\)</span> and <span>\\(H_1\\)</span>. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"221 2","pages":"1799 - 1812"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the unique solvability of the div–curl problem in unbounded domains and energy estimates of solutions\",\"authors\":\"A. V. Gorshkov\",\"doi\":\"10.1134/S0040577924110023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study the problem of reconstructing a solenoidal vector field from a vortex function with a no-slip condition on the boundary of an external two-dimensional domain. A solvability criterion is obtained as a condition for the orthogonality of the vortex function to harmonic functions. We also obtain some estimates of the solution in the spaces <span>\\\\(L_2\\\\)</span> and <span>\\\\(H_1\\\\)</span>. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"221 2\",\"pages\":\"1799 - 1812\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924110023\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924110023","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
On the unique solvability of the div–curl problem in unbounded domains and energy estimates of solutions
We study the problem of reconstructing a solenoidal vector field from a vortex function with a no-slip condition on the boundary of an external two-dimensional domain. A solvability criterion is obtained as a condition for the orthogonality of the vortex function to harmonic functions. We also obtain some estimates of the solution in the spaces \(L_2\) and \(H_1\).
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.