第一正态希尔伯特系数的消失和非负性

IF 0.3 Q4 MATHEMATICS
Linquan Ma, Pham Hung Quy
{"title":"第一正态希尔伯特系数的消失和非负性","authors":"Linquan Ma,&nbsp;Pham Hung Quy","doi":"10.1007/s40306-024-00548-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((R,\\mathfrak {m})\\)</span> be a Noetherian local ring such that <span>\\(\\widehat{R}\\)</span> is reduced. We prove that, when <span>\\(\\widehat{R}\\)</span> is <span>\\(S_2\\)</span>, if there exists a parameter ideal <span>\\(Q\\subseteq R\\)</span> such that <span>\\(\\bar{e}_1(Q)=0\\)</span>, then <i>R</i> is regular and <span>\\(\\nu (\\mathfrak {m}/Q)\\le 1\\)</span>. This leads to an affirmative answer to a problem raised by Goto-Hong-Mandal [Goto, S., Hong, J., Mandal, M.: The positivity of the first coefficients of normal Hilbert polynomials. Proc. Amer. Math. Soc. <b>139</b>(7), 2399–2406 \n(2011)]. We also give an alternative proof (in fact a strengthening) of their main result. In particular, we show that if <span>\\(\\widehat{R}\\)</span> is equidimensional, then <span>\\(\\bar{e}_1(Q)\\ge 0\\)</span> for all parameter ideals <span>\\(Q\\subseteq R\\)</span>, and in characteristic <span>\\(p&gt;0\\)</span>, we actually have <span>\\(e_1^*(Q)\\ge 0\\)</span>. Our proofs rely on the existence of big Cohen-Macaulay algebras.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"49 3","pages":"311 - 325"},"PeriodicalIF":0.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vanishing and Non-negativity of the First Normal Hilbert Coefficient\",\"authors\":\"Linquan Ma,&nbsp;Pham Hung Quy\",\"doi\":\"10.1007/s40306-024-00548-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\((R,\\\\mathfrak {m})\\\\)</span> be a Noetherian local ring such that <span>\\\\(\\\\widehat{R}\\\\)</span> is reduced. We prove that, when <span>\\\\(\\\\widehat{R}\\\\)</span> is <span>\\\\(S_2\\\\)</span>, if there exists a parameter ideal <span>\\\\(Q\\\\subseteq R\\\\)</span> such that <span>\\\\(\\\\bar{e}_1(Q)=0\\\\)</span>, then <i>R</i> is regular and <span>\\\\(\\\\nu (\\\\mathfrak {m}/Q)\\\\le 1\\\\)</span>. This leads to an affirmative answer to a problem raised by Goto-Hong-Mandal [Goto, S., Hong, J., Mandal, M.: The positivity of the first coefficients of normal Hilbert polynomials. Proc. Amer. Math. Soc. <b>139</b>(7), 2399–2406 \\n(2011)]. We also give an alternative proof (in fact a strengthening) of their main result. In particular, we show that if <span>\\\\(\\\\widehat{R}\\\\)</span> is equidimensional, then <span>\\\\(\\\\bar{e}_1(Q)\\\\ge 0\\\\)</span> for all parameter ideals <span>\\\\(Q\\\\subseteq R\\\\)</span>, and in characteristic <span>\\\\(p&gt;0\\\\)</span>, we actually have <span>\\\\(e_1^*(Q)\\\\ge 0\\\\)</span>. Our proofs rely on the existence of big Cohen-Macaulay algebras.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"49 3\",\"pages\":\"311 - 325\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-024-00548-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-024-00548-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让((R,\mathfrak {m}))是一个诺特局部环,使得((\widehat{R}\)是还原的。我们证明,当\(widehat{R}\)是\(S_2\)时,如果存在一个参数理想\(Q/subseteq R\) 使得\(\bar{e}_1(Q)=0\),那么R是正则且\(\nu (\mathfrak {m}/Q)/le 1\).这就为后藤-洪-曼达尔提出的一个问题提供了肯定的答案[后藤,S.,洪,J.,曼达尔,M.:正态希尔伯特多项式第一系数的实在性。Proc.Amer.Proc.139(7), 2399-2406 (2011)].我们还给出了他们主要结果的另一种证明(实际上是一种加强)。特别是,我们证明了如果 \(widehat{R}\) 是等维的,那么对于所有参数理想 \(Q\subseteq R\) 都是\(\bar{e}_1(Q)\ge 0\) ,并且在特征 \(p>0\)中,我们实际上有 \(e_1^*(Q)\ge 0\)。我们的证明依赖于大科恩-麦考莱代数的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vanishing and Non-negativity of the First Normal Hilbert Coefficient

Let \((R,\mathfrak {m})\) be a Noetherian local ring such that \(\widehat{R}\) is reduced. We prove that, when \(\widehat{R}\) is \(S_2\), if there exists a parameter ideal \(Q\subseteq R\) such that \(\bar{e}_1(Q)=0\), then R is regular and \(\nu (\mathfrak {m}/Q)\le 1\). This leads to an affirmative answer to a problem raised by Goto-Hong-Mandal [Goto, S., Hong, J., Mandal, M.: The positivity of the first coefficients of normal Hilbert polynomials. Proc. Amer. Math. Soc. 139(7), 2399–2406 (2011)]. We also give an alternative proof (in fact a strengthening) of their main result. In particular, we show that if \(\widehat{R}\) is equidimensional, then \(\bar{e}_1(Q)\ge 0\) for all parameter ideals \(Q\subseteq R\), and in characteristic \(p>0\), we actually have \(e_1^*(Q)\ge 0\). Our proofs rely on the existence of big Cohen-Macaulay algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
23
期刊介绍: Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信