单项式空间曲线切锥的贝蒂数

IF 0.3 Q4 MATHEMATICS
Nguyen P. H. Lan, Nguyen Chanh Tu, Thanh Vu
{"title":"单项式空间曲线切锥的贝蒂数","authors":"Nguyen P. H. Lan,&nbsp;Nguyen Chanh Tu,&nbsp;Thanh Vu","doi":"10.1007/s40306-024-00546-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(H = \\langle n_1, n_2,n_3\\rangle \\)</span> be a numerical semigroup. Let <span>\\(\\widetilde{H}\\)</span> be the interval completion of <i>H</i>, namely the semigroup generated by the interval <span>\\(\\langle n_1,n_1+1, \\ldots , n_3\\rangle \\)</span>. Let <i>K</i> be a field and <i>K</i>[<i>H</i>] the semigroup ring generated by <i>H</i>. Let <span>\\(I_H^{*}\\)</span> be the defining ideal of the tangent cone of <i>K</i>[<i>H</i>]. In this paper, we describe the defining equations of <span>\\(I_H^{*}\\)</span>. From that, we prove the Herzog-Stamate conjecture for monomial space curves stating that <span>\\(\\beta _i(I_H^{*}) \\le \\beta _i(I_{\\widetilde{H}}^{*})\\)</span> for all <i>i</i>, where <span>\\(\\beta _i(I_H^{*})\\)</span> and <span>\\(\\beta _i(I_{\\widetilde{H}}^{*})\\)</span> are the <i>i</i>th Betti numbers of <span>\\(I_H^{*}\\)</span> and <span>\\(I_{\\widetilde{H}}^{*}\\)</span> respectively.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"49 3","pages":"347 - 365"},"PeriodicalIF":0.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Betti Numbers of the Tangent Cones of Monomial Space Curves\",\"authors\":\"Nguyen P. H. Lan,&nbsp;Nguyen Chanh Tu,&nbsp;Thanh Vu\",\"doi\":\"10.1007/s40306-024-00546-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(H = \\\\langle n_1, n_2,n_3\\\\rangle \\\\)</span> be a numerical semigroup. Let <span>\\\\(\\\\widetilde{H}\\\\)</span> be the interval completion of <i>H</i>, namely the semigroup generated by the interval <span>\\\\(\\\\langle n_1,n_1+1, \\\\ldots , n_3\\\\rangle \\\\)</span>. Let <i>K</i> be a field and <i>K</i>[<i>H</i>] the semigroup ring generated by <i>H</i>. Let <span>\\\\(I_H^{*}\\\\)</span> be the defining ideal of the tangent cone of <i>K</i>[<i>H</i>]. In this paper, we describe the defining equations of <span>\\\\(I_H^{*}\\\\)</span>. From that, we prove the Herzog-Stamate conjecture for monomial space curves stating that <span>\\\\(\\\\beta _i(I_H^{*}) \\\\le \\\\beta _i(I_{\\\\widetilde{H}}^{*})\\\\)</span> for all <i>i</i>, where <span>\\\\(\\\\beta _i(I_H^{*})\\\\)</span> and <span>\\\\(\\\\beta _i(I_{\\\\widetilde{H}}^{*})\\\\)</span> are the <i>i</i>th Betti numbers of <span>\\\\(I_H^{*}\\\\)</span> and <span>\\\\(I_{\\\\widetilde{H}}^{*}\\\\)</span> respectively.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"49 3\",\"pages\":\"347 - 365\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-024-00546-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-024-00546-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让(H = \langle n_1, n_2,n_3\rangle \)是一个数字半群。让 \(\widetilde{H}\) 是 H 的区间完成,即由区间 \(\langle n_1,n_1+1, \ldots , n_3\rangle \) 生成的半群。让 K 是一个域,K[H] 是由 H 生成的半群环。让 \(I_H^{*}\)成为 K[H] 切锥的定义理想。本文将描述 \(I_H^{*}\) 的定义方程。由此,我们证明了单项式空间曲线的赫尔佐格-斯塔马特猜想,即 \(\beta _i(I_H^{*}) \le \beta _i(I_{\widetilde{H}}^{*})\) 对于所有 i、其中 \(\beta _i(I_H^{*})\)和 \(\beta _i(I_{widetilde{H}}^{*})\)分别是 \(I_H^{*}\)和 \(I_{widetilde{H}}^{*})的第 i 个贝蒂数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Betti Numbers of the Tangent Cones of Monomial Space Curves

Let \(H = \langle n_1, n_2,n_3\rangle \) be a numerical semigroup. Let \(\widetilde{H}\) be the interval completion of H, namely the semigroup generated by the interval \(\langle n_1,n_1+1, \ldots , n_3\rangle \). Let K be a field and K[H] the semigroup ring generated by H. Let \(I_H^{*}\) be the defining ideal of the tangent cone of K[H]. In this paper, we describe the defining equations of \(I_H^{*}\). From that, we prove the Herzog-Stamate conjecture for monomial space curves stating that \(\beta _i(I_H^{*}) \le \beta _i(I_{\widetilde{H}}^{*})\) for all i, where \(\beta _i(I_H^{*})\) and \(\beta _i(I_{\widetilde{H}}^{*})\) are the ith Betti numbers of \(I_H^{*}\) and \(I_{\widetilde{H}}^{*}\) respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
23
期刊介绍: Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信