{"title":"单项式空间曲线切锥的贝蒂数","authors":"Nguyen P. H. Lan, Nguyen Chanh Tu, Thanh Vu","doi":"10.1007/s40306-024-00546-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(H = \\langle n_1, n_2,n_3\\rangle \\)</span> be a numerical semigroup. Let <span>\\(\\widetilde{H}\\)</span> be the interval completion of <i>H</i>, namely the semigroup generated by the interval <span>\\(\\langle n_1,n_1+1, \\ldots , n_3\\rangle \\)</span>. Let <i>K</i> be a field and <i>K</i>[<i>H</i>] the semigroup ring generated by <i>H</i>. Let <span>\\(I_H^{*}\\)</span> be the defining ideal of the tangent cone of <i>K</i>[<i>H</i>]. In this paper, we describe the defining equations of <span>\\(I_H^{*}\\)</span>. From that, we prove the Herzog-Stamate conjecture for monomial space curves stating that <span>\\(\\beta _i(I_H^{*}) \\le \\beta _i(I_{\\widetilde{H}}^{*})\\)</span> for all <i>i</i>, where <span>\\(\\beta _i(I_H^{*})\\)</span> and <span>\\(\\beta _i(I_{\\widetilde{H}}^{*})\\)</span> are the <i>i</i>th Betti numbers of <span>\\(I_H^{*}\\)</span> and <span>\\(I_{\\widetilde{H}}^{*}\\)</span> respectively.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"49 3","pages":"347 - 365"},"PeriodicalIF":0.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Betti Numbers of the Tangent Cones of Monomial Space Curves\",\"authors\":\"Nguyen P. H. Lan, Nguyen Chanh Tu, Thanh Vu\",\"doi\":\"10.1007/s40306-024-00546-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(H = \\\\langle n_1, n_2,n_3\\\\rangle \\\\)</span> be a numerical semigroup. Let <span>\\\\(\\\\widetilde{H}\\\\)</span> be the interval completion of <i>H</i>, namely the semigroup generated by the interval <span>\\\\(\\\\langle n_1,n_1+1, \\\\ldots , n_3\\\\rangle \\\\)</span>. Let <i>K</i> be a field and <i>K</i>[<i>H</i>] the semigroup ring generated by <i>H</i>. Let <span>\\\\(I_H^{*}\\\\)</span> be the defining ideal of the tangent cone of <i>K</i>[<i>H</i>]. In this paper, we describe the defining equations of <span>\\\\(I_H^{*}\\\\)</span>. From that, we prove the Herzog-Stamate conjecture for monomial space curves stating that <span>\\\\(\\\\beta _i(I_H^{*}) \\\\le \\\\beta _i(I_{\\\\widetilde{H}}^{*})\\\\)</span> for all <i>i</i>, where <span>\\\\(\\\\beta _i(I_H^{*})\\\\)</span> and <span>\\\\(\\\\beta _i(I_{\\\\widetilde{H}}^{*})\\\\)</span> are the <i>i</i>th Betti numbers of <span>\\\\(I_H^{*}\\\\)</span> and <span>\\\\(I_{\\\\widetilde{H}}^{*}\\\\)</span> respectively.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"49 3\",\"pages\":\"347 - 365\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-024-00546-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-024-00546-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Betti Numbers of the Tangent Cones of Monomial Space Curves
Let \(H = \langle n_1, n_2,n_3\rangle \) be a numerical semigroup. Let \(\widetilde{H}\) be the interval completion of H, namely the semigroup generated by the interval \(\langle n_1,n_1+1, \ldots , n_3\rangle \). Let K be a field and K[H] the semigroup ring generated by H. Let \(I_H^{*}\) be the defining ideal of the tangent cone of K[H]. In this paper, we describe the defining equations of \(I_H^{*}\). From that, we prove the Herzog-Stamate conjecture for monomial space curves stating that \(\beta _i(I_H^{*}) \le \beta _i(I_{\widetilde{H}}^{*})\) for all i, where \(\beta _i(I_H^{*})\) and \(\beta _i(I_{\widetilde{H}}^{*})\) are the ith Betti numbers of \(I_H^{*}\) and \(I_{\widetilde{H}}^{*}\) respectively.
期刊介绍:
Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.