用于时序行为生物识别的时空双注意变换器

Kim-Ngan Nguyen;Sanka Rasnayaka;Sandareka Wickramanayake;Dulani Meedeniya;Sanjay Saha;Terence Sim
{"title":"用于时序行为生物识别的时空双注意变换器","authors":"Kim-Ngan Nguyen;Sanka Rasnayaka;Sandareka Wickramanayake;Dulani Meedeniya;Sanjay Saha;Terence Sim","doi":"10.1109/TBIOM.2024.3394875","DOIUrl":null,"url":null,"abstract":"Continuous Authentication (CA) using behavioral biometrics is a type of biometric identification that recognizes individuals based on their unique behavioral characteristics. Many behavioral biometrics can be captured through multiple sensors, each providing multichannel time-series data. Utilizing this multichannel data effectively can enhance the accuracy of behavioral biometrics-based CA. This paper extends BehaveFormer, a new framework that effectively combines time series data from multiple sensors to provide higher security in behavioral biometrics. BehaveFormer includes two Spatio-Temporal Dual Attention Transformers (STDAT), a novel transformer we introduce to extract more discriminative features from multichannel time-series data. Experimental results on two behavioral biometrics, Keystroke Dynamics and Swipe Dynamics with Inertial Measurement Unit (IMU), have shown State-of-the-art performance. For Keystroke, on three publicly available datasets (Aalto DB, HMOG DB, and HuMIdb), BehaveFormer outperforms the SOTA. For instance, BehaveFormer achieved an EER of 2.95% on the HuMIdb. For Swipe, on two publicly available datasets (HuMIdb and FETA) BehaveFormer outperforms the SOTA, for instance, BehaveFormer achieved an EER of 3.67% on the HuMIdb. Additionally, the BehaveFormer model shows superior performance in various CA-specific evaluation metrics. The proposed STDAT-based BehaveFormer architecture can also be effectively used for transfer learning. The model weights and reproducible experimental results are available at: \n<uri>https://github.com/nganntk/BehaveFormer</uri>","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"6 4","pages":"591-601"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-Temporal Dual-Attention Transformer for Time-Series Behavioral Biometrics\",\"authors\":\"Kim-Ngan Nguyen;Sanka Rasnayaka;Sandareka Wickramanayake;Dulani Meedeniya;Sanjay Saha;Terence Sim\",\"doi\":\"10.1109/TBIOM.2024.3394875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous Authentication (CA) using behavioral biometrics is a type of biometric identification that recognizes individuals based on their unique behavioral characteristics. Many behavioral biometrics can be captured through multiple sensors, each providing multichannel time-series data. Utilizing this multichannel data effectively can enhance the accuracy of behavioral biometrics-based CA. This paper extends BehaveFormer, a new framework that effectively combines time series data from multiple sensors to provide higher security in behavioral biometrics. BehaveFormer includes two Spatio-Temporal Dual Attention Transformers (STDAT), a novel transformer we introduce to extract more discriminative features from multichannel time-series data. Experimental results on two behavioral biometrics, Keystroke Dynamics and Swipe Dynamics with Inertial Measurement Unit (IMU), have shown State-of-the-art performance. For Keystroke, on three publicly available datasets (Aalto DB, HMOG DB, and HuMIdb), BehaveFormer outperforms the SOTA. For instance, BehaveFormer achieved an EER of 2.95% on the HuMIdb. For Swipe, on two publicly available datasets (HuMIdb and FETA) BehaveFormer outperforms the SOTA, for instance, BehaveFormer achieved an EER of 3.67% on the HuMIdb. Additionally, the BehaveFormer model shows superior performance in various CA-specific evaluation metrics. The proposed STDAT-based BehaveFormer architecture can also be effectively used for transfer learning. The model weights and reproducible experimental results are available at: \\n<uri>https://github.com/nganntk/BehaveFormer</uri>\",\"PeriodicalId\":73307,\"journal\":{\"name\":\"IEEE transactions on biometrics, behavior, and identity science\",\"volume\":\"6 4\",\"pages\":\"591-601\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biometrics, behavior, and identity science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10510407/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10510407/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用行为生物识别技术的连续身份验证(CA)是一种生物识别技术,可根据个人独特的行为特征识别个人。许多行为生物识别技术可以通过多个传感器捕获,每个传感器都能提供多通道时间序列数据。有效利用这些多通道数据可以提高基于行为生物识别技术的 CA 的准确性。本文对 BehaveFormer 进行了扩展,这是一个新的框架,能有效结合来自多个传感器的时间序列数据,为行为生物识别提供更高的安全性。BehaveFormer 包括两个时空双注意变换器(STDAT),这是我们引入的一种新型变换器,用于从多通道时间序列数据中提取更具区分性的特征。在两种行为生物识别技术--按键动态和带惯性测量单元(IMU)的刷卡动态--上的实验结果表明,这两种技术的性能达到了最先进水平。在按键识别方面,BehaveFormer 在三个公开数据集(Aalto DB、HMOG DB 和 HuMIdb)上的表现优于 SOTA。例如,BehaveFormer 在 HuMIdb 上的 EER 为 2.95%。对于 Swipe,在两个公开可用的数据集(HuMIdb 和 FETA)上,BehaveFormer 的表现优于 SOTA,例如,BehaveFormer 在 HuMIdb 上的 EER 为 3.67%。此外,BehaveFormer 模型在各种 CA 特定的评估指标中也表现出卓越的性能。所提出的基于 STDAT 的 BehaveFormer 架构还可以有效地用于迁移学习。模型权重和可重现的实验结果可在以下网址获取: https://github.com/nganntk/BehaveFormer
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-Temporal Dual-Attention Transformer for Time-Series Behavioral Biometrics
Continuous Authentication (CA) using behavioral biometrics is a type of biometric identification that recognizes individuals based on their unique behavioral characteristics. Many behavioral biometrics can be captured through multiple sensors, each providing multichannel time-series data. Utilizing this multichannel data effectively can enhance the accuracy of behavioral biometrics-based CA. This paper extends BehaveFormer, a new framework that effectively combines time series data from multiple sensors to provide higher security in behavioral biometrics. BehaveFormer includes two Spatio-Temporal Dual Attention Transformers (STDAT), a novel transformer we introduce to extract more discriminative features from multichannel time-series data. Experimental results on two behavioral biometrics, Keystroke Dynamics and Swipe Dynamics with Inertial Measurement Unit (IMU), have shown State-of-the-art performance. For Keystroke, on three publicly available datasets (Aalto DB, HMOG DB, and HuMIdb), BehaveFormer outperforms the SOTA. For instance, BehaveFormer achieved an EER of 2.95% on the HuMIdb. For Swipe, on two publicly available datasets (HuMIdb and FETA) BehaveFormer outperforms the SOTA, for instance, BehaveFormer achieved an EER of 3.67% on the HuMIdb. Additionally, the BehaveFormer model shows superior performance in various CA-specific evaluation metrics. The proposed STDAT-based BehaveFormer architecture can also be effectively used for transfer learning. The model weights and reproducible experimental results are available at: https://github.com/nganntk/BehaveFormer
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信