Deyong Lu;Wei An;Haibo Wang;Qiang Ling;Dong Cao;Miao Li;Zaiping Lin
{"title":"基于时空特征融合张量模型的红外移动小目标检测","authors":"Deyong Lu;Wei An;Haibo Wang;Qiang Ling;Dong Cao;Miao Li;Zaiping Lin","doi":"10.1109/JSTARS.2024.3491221","DOIUrl":null,"url":null,"abstract":"Infrared moving small target detection is an important and challenging task in infrared search and track system, especially in the case of low signal-to-clutter ratio (SCR) and complex scenes. The spatial–temporal information has not been fully utilized, and there is a serious imbalance in their exploitation, especially the lack of long-term temporal characteristics. In this article, a novel method based on the spatial–temporal feature fusion tensor model is proposed to solve these problems. By directly stacking raw infrared images, the sequence can be transformed into a third-order tensor, where the spatial–temporal features are not reduced or destroyed. Its horizontal and lateral slices can be viewed as 2-D images, showing the change of gray values of horizontal/vertical fixed spatial pixels over time. Then, a new tensor composed of several serial slices are decomposed into low-rank background components and sparse target components, which can make full use of the temporal similarity and spatial correlation of background. The partial tubal nuclear norm is introduced to constrain the low-rank background, and the tensor robust principal component analysis problem is solved quickly by the alternating direction method of multipliers. By superimposing all the decomposed sparse components into the target tensor, small target can be segmented from the reconstructed target image. Experimental results of synthetic and real data demonstrate that the proposed method is superior to other state-of-the-art methods in visual and numerical results for targets with different sizes, velocities, and SCR values under different complex backgrounds.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"78-99"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742415","citationCount":"0","resultStr":"{\"title\":\"Infrared Moving Small Target Detection Based on Spatial–Temporal Feature Fusion Tensor Model\",\"authors\":\"Deyong Lu;Wei An;Haibo Wang;Qiang Ling;Dong Cao;Miao Li;Zaiping Lin\",\"doi\":\"10.1109/JSTARS.2024.3491221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infrared moving small target detection is an important and challenging task in infrared search and track system, especially in the case of low signal-to-clutter ratio (SCR) and complex scenes. The spatial–temporal information has not been fully utilized, and there is a serious imbalance in their exploitation, especially the lack of long-term temporal characteristics. In this article, a novel method based on the spatial–temporal feature fusion tensor model is proposed to solve these problems. By directly stacking raw infrared images, the sequence can be transformed into a third-order tensor, where the spatial–temporal features are not reduced or destroyed. Its horizontal and lateral slices can be viewed as 2-D images, showing the change of gray values of horizontal/vertical fixed spatial pixels over time. Then, a new tensor composed of several serial slices are decomposed into low-rank background components and sparse target components, which can make full use of the temporal similarity and spatial correlation of background. The partial tubal nuclear norm is introduced to constrain the low-rank background, and the tensor robust principal component analysis problem is solved quickly by the alternating direction method of multipliers. By superimposing all the decomposed sparse components into the target tensor, small target can be segmented from the reconstructed target image. Experimental results of synthetic and real data demonstrate that the proposed method is superior to other state-of-the-art methods in visual and numerical results for targets with different sizes, velocities, and SCR values under different complex backgrounds.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"18 \",\"pages\":\"78-99\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742415\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10742415/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10742415/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Infrared Moving Small Target Detection Based on Spatial–Temporal Feature Fusion Tensor Model
Infrared moving small target detection is an important and challenging task in infrared search and track system, especially in the case of low signal-to-clutter ratio (SCR) and complex scenes. The spatial–temporal information has not been fully utilized, and there is a serious imbalance in their exploitation, especially the lack of long-term temporal characteristics. In this article, a novel method based on the spatial–temporal feature fusion tensor model is proposed to solve these problems. By directly stacking raw infrared images, the sequence can be transformed into a third-order tensor, where the spatial–temporal features are not reduced or destroyed. Its horizontal and lateral slices can be viewed as 2-D images, showing the change of gray values of horizontal/vertical fixed spatial pixels over time. Then, a new tensor composed of several serial slices are decomposed into low-rank background components and sparse target components, which can make full use of the temporal similarity and spatial correlation of background. The partial tubal nuclear norm is introduced to constrain the low-rank background, and the tensor robust principal component analysis problem is solved quickly by the alternating direction method of multipliers. By superimposing all the decomposed sparse components into the target tensor, small target can be segmented from the reconstructed target image. Experimental results of synthetic and real data demonstrate that the proposed method is superior to other state-of-the-art methods in visual and numerical results for targets with different sizes, velocities, and SCR values under different complex backgrounds.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.