开发微物理系统以模拟人类癌症从结肠转移到肝脏的过程

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Paula G. Miller, Emina Huang, Robert Fisher, Michael L. Shuler
{"title":"开发微物理系统以模拟人类癌症从结肠转移到肝脏的过程","authors":"Paula G. Miller, Emina Huang, Robert Fisher, Michael L. Shuler","doi":"10.1002/bit.28890","DOIUrl":null,"url":null,"abstract":"We describe a novel device to mimic the metastasis of cancer cells from the colon into the liver in a human model. The colon mimic is connected to the liver model by a gravity-driven recirculating unidirectional flow of a blood surrogate and can mimic the five steps of the metastatic cascade: invasion in the colon, intravasation into the bloodstream, systemic transportation, extravasation into the liver, and colonization in the liver. The colon mimic uses established normal colon epithelial organoid cells (NL) and human umbilical vein endothelial cells (HUVEC) plated on opposite sides of a membrane. To better mimic the colon structure the NL side of the membrane is exposed to air to establish an air-liquid interface. The liver mimic consists of human liver sinusoidal endothelial cells (HHSEC) and epithelial hepatic cells (HepG2 C3A) plated in Matrigel on opposite sides of a membrane. Labeled colorectal cancer cells/clusters (CA) from organoids are introduced into an established normal colon epithelial cell (NL) layer from the same patient before assembly of the system or alternatively NL organoids and fluorescently labeled CA organoids from the same patient were prepared as a ratio of 10:1 NL:CA and established together before assembly of the system. Cell viability is greater than 85% in this system. We demonstrate that over 5 days of operation that the five steps of the metastatic cascade are replicated. This novel device allows an in vitro estimate of metastatic capability (as measured by using percentages of the labeled areas per device through ImageJ) in response to selected variables. In this study, the metastatic capability depends on the source of cancer cells (e.g., the patient), the clumping of cancer cells, glucose concentration, and oxygen levels (hypoxia). For the first time, this new in vitro system mimics all five steps of the metastatic cascade in a single device and provides a new device to probe and observe the process of metastasis in a human-based model in only 5 days. The rapid observation is due to the use of a high concentration of cancer cells in the colon (e.g. 10%) and the absence of the immune system. Our device makes it possible to probe aspects of each step of metastasis and interactions between steps.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"16 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Microphysiological System to Model Human Cancer Metastasis From the Colon to the Liver\",\"authors\":\"Paula G. Miller, Emina Huang, Robert Fisher, Michael L. Shuler\",\"doi\":\"10.1002/bit.28890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a novel device to mimic the metastasis of cancer cells from the colon into the liver in a human model. The colon mimic is connected to the liver model by a gravity-driven recirculating unidirectional flow of a blood surrogate and can mimic the five steps of the metastatic cascade: invasion in the colon, intravasation into the bloodstream, systemic transportation, extravasation into the liver, and colonization in the liver. The colon mimic uses established normal colon epithelial organoid cells (NL) and human umbilical vein endothelial cells (HUVEC) plated on opposite sides of a membrane. To better mimic the colon structure the NL side of the membrane is exposed to air to establish an air-liquid interface. The liver mimic consists of human liver sinusoidal endothelial cells (HHSEC) and epithelial hepatic cells (HepG2 C3A) plated in Matrigel on opposite sides of a membrane. Labeled colorectal cancer cells/clusters (CA) from organoids are introduced into an established normal colon epithelial cell (NL) layer from the same patient before assembly of the system or alternatively NL organoids and fluorescently labeled CA organoids from the same patient were prepared as a ratio of 10:1 NL:CA and established together before assembly of the system. Cell viability is greater than 85% in this system. We demonstrate that over 5 days of operation that the five steps of the metastatic cascade are replicated. This novel device allows an in vitro estimate of metastatic capability (as measured by using percentages of the labeled areas per device through ImageJ) in response to selected variables. In this study, the metastatic capability depends on the source of cancer cells (e.g., the patient), the clumping of cancer cells, glucose concentration, and oxygen levels (hypoxia). For the first time, this new in vitro system mimics all five steps of the metastatic cascade in a single device and provides a new device to probe and observe the process of metastasis in a human-based model in only 5 days. The rapid observation is due to the use of a high concentration of cancer cells in the colon (e.g. 10%) and the absence of the immune system. Our device makes it possible to probe aspects of each step of metastasis and interactions between steps.\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bit.28890\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28890","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种在人体模型中模拟癌细胞从结肠转移到肝脏的新型装置。结肠模拟器通过重力驱动的血液代用品单向循环流与肝脏模型相连,可以模拟转移级联的五个步骤:结肠入侵、内渗进入血液、全身运输、外渗进入肝脏和在肝脏定植。结肠模拟物使用的是已建立的正常结肠上皮类器官细胞(NL)和人脐静脉内皮细胞(HUVEC),它们被置于膜的两侧。为了更好地模拟结肠结构,膜的 NL 侧暴露在空气中,以建立气液界面。模拟肝脏的细胞由人肝窦状内皮细胞(HHSEC)和肝上皮细胞(HepG2 C3A)组成,它们被培养在 Matrigel 中,位于膜的相对两侧。在组装系统之前,将来自器官组织的标记结直肠癌细胞/簇(CA)导入来自同一患者的已建立的正常结肠上皮细胞(NL)层;或者将来自同一患者的 NL 器官组织和荧光标记 CA 器官组织按 10:1 NL:CA 的比例制备,并在组装系统之前一起建立。该系统的细胞存活率超过 85%。我们证明,在 5 天的操作过程中,转移级联的五个步骤都得到了复制。这种新型装置可以根据选定的变量对转移能力进行体外评估(通过 ImageJ 使用每个装置标记区域的百分比进行测量)。在这项研究中,转移能力取决于癌细胞的来源(如病人)、癌细胞的聚集、葡萄糖浓度和氧气水平(缺氧)。这一新的体外系统首次在单一装置中模拟了转移级联的所有五个步骤,并提供了一种新的装置,只需 5 天就能探查和观察人体模型的转移过程。之所以能快速观察,是因为在结肠中使用了高浓度的癌细胞(如 10%),而且没有免疫系统。我们的设备可以探测转移过程的每个步骤以及各步骤之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of a Microphysiological System to Model Human Cancer Metastasis From the Colon to the Liver

Development of a Microphysiological System to Model Human Cancer Metastasis From the Colon to the Liver
We describe a novel device to mimic the metastasis of cancer cells from the colon into the liver in a human model. The colon mimic is connected to the liver model by a gravity-driven recirculating unidirectional flow of a blood surrogate and can mimic the five steps of the metastatic cascade: invasion in the colon, intravasation into the bloodstream, systemic transportation, extravasation into the liver, and colonization in the liver. The colon mimic uses established normal colon epithelial organoid cells (NL) and human umbilical vein endothelial cells (HUVEC) plated on opposite sides of a membrane. To better mimic the colon structure the NL side of the membrane is exposed to air to establish an air-liquid interface. The liver mimic consists of human liver sinusoidal endothelial cells (HHSEC) and epithelial hepatic cells (HepG2 C3A) plated in Matrigel on opposite sides of a membrane. Labeled colorectal cancer cells/clusters (CA) from organoids are introduced into an established normal colon epithelial cell (NL) layer from the same patient before assembly of the system or alternatively NL organoids and fluorescently labeled CA organoids from the same patient were prepared as a ratio of 10:1 NL:CA and established together before assembly of the system. Cell viability is greater than 85% in this system. We demonstrate that over 5 days of operation that the five steps of the metastatic cascade are replicated. This novel device allows an in vitro estimate of metastatic capability (as measured by using percentages of the labeled areas per device through ImageJ) in response to selected variables. In this study, the metastatic capability depends on the source of cancer cells (e.g., the patient), the clumping of cancer cells, glucose concentration, and oxygen levels (hypoxia). For the first time, this new in vitro system mimics all five steps of the metastatic cascade in a single device and provides a new device to probe and observe the process of metastasis in a human-based model in only 5 days. The rapid observation is due to the use of a high concentration of cancer cells in the colon (e.g. 10%) and the absence of the immune system. Our device makes it possible to probe aspects of each step of metastasis and interactions between steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信