量子退相干对膨胀引力波的影响

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Jessie de Kruijf and Nicola Bartolo
{"title":"量子退相干对膨胀引力波的影响","authors":"Jessie de Kruijf and Nicola Bartolo","doi":"10.1088/1475-7516/2024/11/041","DOIUrl":null,"url":null,"abstract":"The theory of inflation provides a mechanism to explain the structures we observe today in the Universe, starting from quantum-mechanically generated fluctuations. However, this leaves the question of: how did the quantum-to-classical transition, occur? During inflation, tensor perturbations interact (at least gravitationally) with other fields, meaning that we need to view these perturbations as an open system that interacts with an environment. In this paper, the evolution of the system is described using a Lindblad equation, which describes the quantum decoherence of the system. This is a possible mechanism for explaining the quantum-to-classical transition. We show that this quantum decoherence during a de Sitter phase leads to a scale-dependent increase of the gravitational wave power spectrum, depending on the strength and time dependence of the interaction between the system and the environment. By using current upper bounds on the gravitational wave power spectrum from inflation, obtained from CMB and the LIGO-Virgo-KAGRA constraints, we find an upper bound on the interaction strength. Furthermore, we compute the decoherence criterion, which indicates the minimal interaction strength needed for a specific scale to have successfully decohered by the end of inflation. Assuming that the CMB modes have completely decohered, we indicate a lower bound on the interaction strength. In addition, this decoherence criterion allows us to look at which scales might not have fully decohered and could still show some relic quantum signatures. Lastly, we use sensitivity forecasts to study how future gravitational-wave detectors, such as LISA and ET, could constrain the decoherence parameter space. Due to the scale-dependence of the power spectrum, LISA could only have a very small impact. However, ET will be able to significantly improve our current constraints for specific decoherence scenarios.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"25 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of quantum decoherence on inflationary gravitational waves\",\"authors\":\"Jessie de Kruijf and Nicola Bartolo\",\"doi\":\"10.1088/1475-7516/2024/11/041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of inflation provides a mechanism to explain the structures we observe today in the Universe, starting from quantum-mechanically generated fluctuations. However, this leaves the question of: how did the quantum-to-classical transition, occur? During inflation, tensor perturbations interact (at least gravitationally) with other fields, meaning that we need to view these perturbations as an open system that interacts with an environment. In this paper, the evolution of the system is described using a Lindblad equation, which describes the quantum decoherence of the system. This is a possible mechanism for explaining the quantum-to-classical transition. We show that this quantum decoherence during a de Sitter phase leads to a scale-dependent increase of the gravitational wave power spectrum, depending on the strength and time dependence of the interaction between the system and the environment. By using current upper bounds on the gravitational wave power spectrum from inflation, obtained from CMB and the LIGO-Virgo-KAGRA constraints, we find an upper bound on the interaction strength. Furthermore, we compute the decoherence criterion, which indicates the minimal interaction strength needed for a specific scale to have successfully decohered by the end of inflation. Assuming that the CMB modes have completely decohered, we indicate a lower bound on the interaction strength. In addition, this decoherence criterion allows us to look at which scales might not have fully decohered and could still show some relic quantum signatures. Lastly, we use sensitivity forecasts to study how future gravitational-wave detectors, such as LISA and ET, could constrain the decoherence parameter space. Due to the scale-dependence of the power spectrum, LISA could only have a very small impact. However, ET will be able to significantly improve our current constraints for specific decoherence scenarios.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2024/11/041\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/11/041","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

暴胀理论提供了一种机制,从量子力学产生的波动出发,解释我们今天观测到的宇宙结构。然而,这就留下了一个问题:量子到经典的转变是如何发生的?在膨胀过程中,张量扰动与其他场相互作用(至少是引力作用),这意味着我们需要将这些扰动视为一个与环境相互作用的开放系统。本文使用林德布拉德方程来描述系统的演化,该方程描述了系统的量子退相干性。这是解释量子到经典转变的一种可能机制。我们的研究表明,在德西特阶段的量子退相干会导致引力波功率谱随尺度增加,这取决于系统与环境之间相互作用的强度和时间依赖性。通过利用目前从 CMB 和 LIGO-Virgo-KAGRA 约束中获得的关于来自膨胀的引力波功率谱的上限,我们找到了相互作用强度的上限。此外,我们还计算了退相干准则,它指出了特定尺度在暴胀结束时成功退相干所需的最小相互作用强度。假定 CMB 模式已经完全退相干,我们就给出了相互作用强度的下限。此外,这个退相干标准还允许我们研究哪些尺度可能还没有完全退相干,仍然可以显示出一些遗迹量子特征。最后,我们利用灵敏度预测来研究未来的引力波探测器(如 LISA 和 ET)如何约束退相干参数空间。由于功率谱的尺度依赖性,LISA 只能产生很小的影响。然而,ET 将能够显著改善我们目前对特定退相干情况的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of quantum decoherence on inflationary gravitational waves
The theory of inflation provides a mechanism to explain the structures we observe today in the Universe, starting from quantum-mechanically generated fluctuations. However, this leaves the question of: how did the quantum-to-classical transition, occur? During inflation, tensor perturbations interact (at least gravitationally) with other fields, meaning that we need to view these perturbations as an open system that interacts with an environment. In this paper, the evolution of the system is described using a Lindblad equation, which describes the quantum decoherence of the system. This is a possible mechanism for explaining the quantum-to-classical transition. We show that this quantum decoherence during a de Sitter phase leads to a scale-dependent increase of the gravitational wave power spectrum, depending on the strength and time dependence of the interaction between the system and the environment. By using current upper bounds on the gravitational wave power spectrum from inflation, obtained from CMB and the LIGO-Virgo-KAGRA constraints, we find an upper bound on the interaction strength. Furthermore, we compute the decoherence criterion, which indicates the minimal interaction strength needed for a specific scale to have successfully decohered by the end of inflation. Assuming that the CMB modes have completely decohered, we indicate a lower bound on the interaction strength. In addition, this decoherence criterion allows us to look at which scales might not have fully decohered and could still show some relic quantum signatures. Lastly, we use sensitivity forecasts to study how future gravitational-wave detectors, such as LISA and ET, could constrain the decoherence parameter space. Due to the scale-dependence of the power spectrum, LISA could only have a very small impact. However, ET will be able to significantly improve our current constraints for specific decoherence scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信