爱因斯坦标量高斯-波奈引力中的暗能量和暗物质相互作用模型

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Saddam Hussain, Simran Arora, Yamuna Rana, Benjamin Rose and Anzhong Wang
{"title":"爱因斯坦标量高斯-波奈引力中的暗能量和暗物质相互作用模型","authors":"Saddam Hussain, Simran Arora, Yamuna Rana, Benjamin Rose and Anzhong Wang","doi":"10.1088/1475-7516/2024/11/042","DOIUrl":null,"url":null,"abstract":"We study the dynamics of the interacting models between the Gauss-Bonnet (GB) coupled scalar field and the dark matter fluid in a homogeneous and isotropic background. A key feature of GB coupling models is the varying speed of gravitational waves (GWs). We utilize recent constraints on the GW speed and conduct our analysis in two primary scenarios: model-dependent and model-independent. In the model-dependent scenario, where determining the GW speed requires a specific GB coupling functional form, we choose an exponential GB coupling. We adopt a dynamical system analysis to obtain the necessary constraints on the model parameters that describe different phases of the universe and produce a stable late-time accelerating solution following the GW constraint, and find that to satisfy all these constraints, fine-tuning of the free parameters involved in the models is often needed. In the model-independent scenario, the GW speed is fixed to one, and we construct the autonomous system to identify the late-time stable accelerating critical points. Furthermore, we adopt a Bayesian inference method using late-time observational data sets, including 31 data points from cosmic chronometer data (Hubble data) and 1701 data points from Pantheon+ and find that all the observational constraints can be satisfied without fine-tuning. In addition, we also utilize simulated binned Roman and LSST data to study the evolution of the universe in the model-independent scenario. We find that the model shows significant deviation at higher redshifts from ΛCDM and fits the current data much better than ΛCDM within the error bars.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"24 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interacting models of dark energy and dark matter in Einstein scalar Gauss Bonnet gravity\",\"authors\":\"Saddam Hussain, Simran Arora, Yamuna Rana, Benjamin Rose and Anzhong Wang\",\"doi\":\"10.1088/1475-7516/2024/11/042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the dynamics of the interacting models between the Gauss-Bonnet (GB) coupled scalar field and the dark matter fluid in a homogeneous and isotropic background. A key feature of GB coupling models is the varying speed of gravitational waves (GWs). We utilize recent constraints on the GW speed and conduct our analysis in two primary scenarios: model-dependent and model-independent. In the model-dependent scenario, where determining the GW speed requires a specific GB coupling functional form, we choose an exponential GB coupling. We adopt a dynamical system analysis to obtain the necessary constraints on the model parameters that describe different phases of the universe and produce a stable late-time accelerating solution following the GW constraint, and find that to satisfy all these constraints, fine-tuning of the free parameters involved in the models is often needed. In the model-independent scenario, the GW speed is fixed to one, and we construct the autonomous system to identify the late-time stable accelerating critical points. Furthermore, we adopt a Bayesian inference method using late-time observational data sets, including 31 data points from cosmic chronometer data (Hubble data) and 1701 data points from Pantheon+ and find that all the observational constraints can be satisfied without fine-tuning. In addition, we also utilize simulated binned Roman and LSST data to study the evolution of the universe in the model-independent scenario. We find that the model shows significant deviation at higher redshifts from ΛCDM and fits the current data much better than ΛCDM within the error bars.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2024/11/042\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/11/042","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了同质各向同性背景下高斯-波奈(GB)耦合标量场与暗物质流体之间相互作用模型的动力学。GB耦合模型的一个关键特征是引力波(GWs)的速度变化。我们利用最近对引力波速度的约束,在两种主要情况下进行分析:依赖模型和不依赖模型。在依赖模型的情况下,确定引力波速度需要特定的 GB 耦合函数形式,我们选择了指数 GB 耦合。我们采用动力学系统分析来获得模型参数的必要约束,这些参数描述了宇宙的不同阶段,并根据全球变暖约束产生稳定的晚期加速解。在与模型无关的情况下,GW 速度被固定为 1,我们构建了自主系统,以确定晚期稳定加速临界点。此外,我们采用贝叶斯推理方法,利用晚期观测数据集,包括宇宙天文台数据(哈勃数据)的 31 个数据点和 Pantheon+ 的 1701 个数据点,发现所有观测约束都可以在不进行微调的情况下得到满足。此外,我们还利用模拟的二进制罗曼数据和 LSST 数据研究了独立于模型情况下的宇宙演化。我们发现,该模型在较高红移时与ΛCDM有明显偏差,在误差范围内,它比ΛCDM更适合当前的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interacting models of dark energy and dark matter in Einstein scalar Gauss Bonnet gravity
We study the dynamics of the interacting models between the Gauss-Bonnet (GB) coupled scalar field and the dark matter fluid in a homogeneous and isotropic background. A key feature of GB coupling models is the varying speed of gravitational waves (GWs). We utilize recent constraints on the GW speed and conduct our analysis in two primary scenarios: model-dependent and model-independent. In the model-dependent scenario, where determining the GW speed requires a specific GB coupling functional form, we choose an exponential GB coupling. We adopt a dynamical system analysis to obtain the necessary constraints on the model parameters that describe different phases of the universe and produce a stable late-time accelerating solution following the GW constraint, and find that to satisfy all these constraints, fine-tuning of the free parameters involved in the models is often needed. In the model-independent scenario, the GW speed is fixed to one, and we construct the autonomous system to identify the late-time stable accelerating critical points. Furthermore, we adopt a Bayesian inference method using late-time observational data sets, including 31 data points from cosmic chronometer data (Hubble data) and 1701 data points from Pantheon+ and find that all the observational constraints can be satisfied without fine-tuning. In addition, we also utilize simulated binned Roman and LSST data to study the evolution of the universe in the model-independent scenario. We find that the model shows significant deviation at higher redshifts from ΛCDM and fits the current data much better than ΛCDM within the error bars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信