利用非接触式床震图进行实时连续血压估算

Yingjian Song, Bingnan Li, Dan Luo, Glenna S Brewster Glasgow, Bradley G Phillips, Yuan Ke, Wenzhan Song
{"title":"利用非接触式床震图进行实时连续血压估算","authors":"Yingjian Song, Bingnan Li, Dan Luo, Glenna S Brewster Glasgow, Bradley G Phillips, Yuan Ke, Wenzhan Song","doi":"10.1109/icc51166.2024.10622995","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we introduce BedDot, the first contact-free and bed-mounted continuous blood pressure monitoring sensor. Equipped with a seismic sensor, BedDot eliminates the need for external wearable devices and physical contact, while avoiding privacy or radiation concerns associated with other technologies such as cameras or radars. Using advanced preprocessing techniques and innovative AI algorithms, we extract time-series features from the collected bedseismogram signals and accurately estimate blood pressure with remarkable stability and robustness. Our user-friendly prototype has been tested with over 75 participants, demonstrating exceptional performance that meets all three major industry standards, which are Association for the Advancement of Medical Instrumentation (AAMI), Food and Drug Administration (FDA) and the British and Irish Hypertension Society (BHS), and outperforms current state-of-the-art deep learning models for time series analysis. As a non-invasive solution for monitoring blood pressure during sleep and assessing cardiovascular health, BedDot holds immense potential for revolutionizing the field.</p>","PeriodicalId":93294,"journal":{"name":"IEEE International Conference on Communications : [proceedings]. IEEE International Conference on Communications","volume":"2024 ","pages":"214-219"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583795/pdf/","citationCount":"0","resultStr":"{\"title\":\"Real-time Continuous Blood Pressure Estimation with Contact-free Bedseismogram.\",\"authors\":\"Yingjian Song, Bingnan Li, Dan Luo, Glenna S Brewster Glasgow, Bradley G Phillips, Yuan Ke, Wenzhan Song\",\"doi\":\"10.1109/icc51166.2024.10622995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we introduce BedDot, the first contact-free and bed-mounted continuous blood pressure monitoring sensor. Equipped with a seismic sensor, BedDot eliminates the need for external wearable devices and physical contact, while avoiding privacy or radiation concerns associated with other technologies such as cameras or radars. Using advanced preprocessing techniques and innovative AI algorithms, we extract time-series features from the collected bedseismogram signals and accurately estimate blood pressure with remarkable stability and robustness. Our user-friendly prototype has been tested with over 75 participants, demonstrating exceptional performance that meets all three major industry standards, which are Association for the Advancement of Medical Instrumentation (AAMI), Food and Drug Administration (FDA) and the British and Irish Hypertension Society (BHS), and outperforms current state-of-the-art deep learning models for time series analysis. As a non-invasive solution for monitoring blood pressure during sleep and assessing cardiovascular health, BedDot holds immense potential for revolutionizing the field.</p>\",\"PeriodicalId\":93294,\"journal\":{\"name\":\"IEEE International Conference on Communications : [proceedings]. IEEE International Conference on Communications\",\"volume\":\"2024 \",\"pages\":\"214-219\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583795/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Communications : [proceedings]. IEEE International Conference on Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icc51166.2024.10622995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Communications : [proceedings]. IEEE International Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icc51166.2024.10622995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们介绍了首款非接触式床载连续血压监测传感器 BedDot。BedDot 配备了地震传感器,无需外部可穿戴设备和身体接触,同时避免了与摄像头或雷达等其他技术相关的隐私或辐射问题。利用先进的预处理技术和创新的人工智能算法,我们从收集到的床震图信号中提取时间序列特征,并以出色的稳定性和鲁棒性准确估计血压。我们的用户友好型原型已在超过 75 名参与者中进行了测试,证明其卓越的性能符合所有三大行业标准,即美国医学仪器促进协会(AAMI)、美国食品药品管理局(FDA)和英国及爱尔兰高血压协会(BHS)的标准,并优于当前最先进的时间序列分析深度学习模型。BedDot 作为一种用于监测睡眠期间血压和评估心血管健康状况的无创解决方案,具有彻底改变这一领域的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Continuous Blood Pressure Estimation with Contact-free Bedseismogram.

In this study, we introduce BedDot, the first contact-free and bed-mounted continuous blood pressure monitoring sensor. Equipped with a seismic sensor, BedDot eliminates the need for external wearable devices and physical contact, while avoiding privacy or radiation concerns associated with other technologies such as cameras or radars. Using advanced preprocessing techniques and innovative AI algorithms, we extract time-series features from the collected bedseismogram signals and accurately estimate blood pressure with remarkable stability and robustness. Our user-friendly prototype has been tested with over 75 participants, demonstrating exceptional performance that meets all three major industry standards, which are Association for the Advancement of Medical Instrumentation (AAMI), Food and Drug Administration (FDA) and the British and Irish Hypertension Society (BHS), and outperforms current state-of-the-art deep learning models for time series analysis. As a non-invasive solution for monitoring blood pressure during sleep and assessing cardiovascular health, BedDot holds immense potential for revolutionizing the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信