黄单胞菌(Xanthomonas euvesicatoria pv. perforans)种群的铜抗性进化。

IF 5 2区 生物学 Q1 MICROBIOLOGY
mSystems Pub Date : 2024-12-17 Epub Date: 2024-11-25 DOI:10.1128/msystems.01427-24
Amandeep Kaur, Gerald V Minsavage, Neha Potnis, Jeffrey B Jones, Erica M Goss
{"title":"黄单胞菌(Xanthomonas euvesicatoria pv. perforans)种群的铜抗性进化。","authors":"Amandeep Kaur, Gerald V Minsavage, Neha Potnis, Jeffrey B Jones, Erica M Goss","doi":"10.1128/msystems.01427-24","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread use of antimicrobials that target bacterial pathogens has driven evolution of resistance, compromising the efficacy of these bactericides. Understanding the emergence and spread of resistance genes via mobile genetic elements is crucial for combating antimicrobial resistance. Copper resistance (CuR) in <i>Xanthomonas euvesicatoria</i> pv. <i>perforans</i> has severely affected the efficacy of copper-based bactericides for controlling bacterial leaf spot disease of tomato and pepper. Here, we investigated the evolutionary pathways of CuR acquisition and dissemination in <i>X. euvesicatoria</i> pv. <i>perforans</i> using an extensive collection of strains. We determined that chromosomally encoded CuR predominates over plasmid-borne CuR in multiple distinct phylogenetic groups of <i>X. euvesicatoria</i> pv. <i>perforans</i>. Our analysis revealed a single site of chromosomal integration by a CuR genomic island, although the genomic island showed sequence variation among phylogenetic groups. While chromosomal CuR was more prevalent, strains with plasmid-borne resistance conferred greater copper tolerance. Additionally, we identified strains carrying two copies of CuR genes, on plasmid and chromosome, that exhibited increased copper tolerance. Strains of <i>X. euvesicatoria</i> pv. <i>perforans</i> from the USA shared identical CuR gene sequences whether on plasmids or chromosome while different alleles were found in strains from other countries. In contrast to <i>X. euvesicatoria</i> pv. <i>perforans</i>, plasmid-borne CuR predominated in closely related pathovar, <i>X. euvesicatoria</i> pv. <i>euvesicatoria</i>. Overall, these findings contribute to a better understanding of the evolution and persistence of CuR in <i>X. euvesicatoria</i> pv. <i>perforans</i> and its closest relatives.IMPORTANCEThe emergence of antimicrobial resistance is a significant threat to agricultural production as it reduces the efficacy of various antimicrobials including copper-based bactericides that are widely used to control plant diseases. The challenge of increasing antimicrobial resistance entering a production system necessitates a deeper understanding of the dynamics and mechanisms by which pathogens acquire resistance. As a result of this research, we have identified different mechanisms of copper resistance acquisition as well as levels of copper resistance in a devastating plant pathogen, <i>X. euvesicatoria</i> pv. <i>perforans</i>. The evolution and dissemination of copper resistance in strains through plasmid or chromosomally integrated genomic island or both presents barriers to current management approaches, where growers rely heavily on copper-based bactericides to manage disease outbreaks. This knowledge is crucial when considering the continued use of existing antimicrobials or adopting alternative antimicrobials in efforts to implement enhanced antimicrobial stewardship strategies in agriculture.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0142724"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651105/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolution of copper resistance in <i>Xanthomonas euvesicatoria</i> pv. <i>perforans</i> population.\",\"authors\":\"Amandeep Kaur, Gerald V Minsavage, Neha Potnis, Jeffrey B Jones, Erica M Goss\",\"doi\":\"10.1128/msystems.01427-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread use of antimicrobials that target bacterial pathogens has driven evolution of resistance, compromising the efficacy of these bactericides. Understanding the emergence and spread of resistance genes via mobile genetic elements is crucial for combating antimicrobial resistance. Copper resistance (CuR) in <i>Xanthomonas euvesicatoria</i> pv. <i>perforans</i> has severely affected the efficacy of copper-based bactericides for controlling bacterial leaf spot disease of tomato and pepper. Here, we investigated the evolutionary pathways of CuR acquisition and dissemination in <i>X. euvesicatoria</i> pv. <i>perforans</i> using an extensive collection of strains. We determined that chromosomally encoded CuR predominates over plasmid-borne CuR in multiple distinct phylogenetic groups of <i>X. euvesicatoria</i> pv. <i>perforans</i>. Our analysis revealed a single site of chromosomal integration by a CuR genomic island, although the genomic island showed sequence variation among phylogenetic groups. While chromosomal CuR was more prevalent, strains with plasmid-borne resistance conferred greater copper tolerance. Additionally, we identified strains carrying two copies of CuR genes, on plasmid and chromosome, that exhibited increased copper tolerance. Strains of <i>X. euvesicatoria</i> pv. <i>perforans</i> from the USA shared identical CuR gene sequences whether on plasmids or chromosome while different alleles were found in strains from other countries. In contrast to <i>X. euvesicatoria</i> pv. <i>perforans</i>, plasmid-borne CuR predominated in closely related pathovar, <i>X. euvesicatoria</i> pv. <i>euvesicatoria</i>. Overall, these findings contribute to a better understanding of the evolution and persistence of CuR in <i>X. euvesicatoria</i> pv. <i>perforans</i> and its closest relatives.IMPORTANCEThe emergence of antimicrobial resistance is a significant threat to agricultural production as it reduces the efficacy of various antimicrobials including copper-based bactericides that are widely used to control plant diseases. The challenge of increasing antimicrobial resistance entering a production system necessitates a deeper understanding of the dynamics and mechanisms by which pathogens acquire resistance. As a result of this research, we have identified different mechanisms of copper resistance acquisition as well as levels of copper resistance in a devastating plant pathogen, <i>X. euvesicatoria</i> pv. <i>perforans</i>. The evolution and dissemination of copper resistance in strains through plasmid or chromosomally integrated genomic island or both presents barriers to current management approaches, where growers rely heavily on copper-based bactericides to manage disease outbreaks. This knowledge is crucial when considering the continued use of existing antimicrobials or adopting alternative antimicrobials in efforts to implement enhanced antimicrobial stewardship strategies in agriculture.</p>\",\"PeriodicalId\":18819,\"journal\":{\"name\":\"mSystems\",\"volume\":\" \",\"pages\":\"e0142724\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651105/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msystems.01427-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.01427-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

针对细菌病原体的抗菌剂的广泛使用推动了抗药性的进化,损害了这些杀菌剂的功效。了解抗性基因通过移动遗传因子产生和传播的过程,对于对抗抗菌素抗药性至关重要。Xanthomonas euvesicatoria pv. perforans的铜抗性(CuR)严重影响了铜基杀菌剂控制番茄和辣椒细菌性叶斑病的效果。在这里,我们利用广泛收集的菌株研究了 X. euvesicatoria pv. perforans 中 CuR 获取和传播的进化途径。我们确定,在 X. euvesicatoria pv. perforans 的多个不同系统发生群中,染色体编码的 CuR 比质粒携带的 CuR 占优势。我们的分析揭示了一个由 CuR 基因组岛组成的染色体整合位点,尽管该基因组岛在不同系统发育群之间存在序列差异。虽然染色体 CuR 更为普遍,但具有质粒抗性的菌株耐铜性更强。此外,我们还发现质粒和染色体上携带两个 CuR 基因拷贝的菌株具有更强的耐铜性。美国的 X. euvesicatoria pv. perforans 菌株无论是质粒还是染色体上的 CuR 基因序列都完全相同,而其他国家的菌株则有不同的等位基因。与 X. euvesicatoria pv. perforans 相反,质粒携带的 CuR 在密切相关的病原菌 X. euvesicatoria pv. euvesicatoria 中占主导地位。总体而言,这些发现有助于更好地了解 CuR 在 X. euvesicatoria pv. perforans 及其近亲中的进化和持久性。重要意义抗菌素抗药性的出现对农业生产构成重大威胁,因为它会降低各种抗菌素的效力,包括广泛用于控制植物病害的铜基杀菌剂。面对生产系统中抗菌素抗药性不断增加的挑战,有必要深入了解病原体获得抗药性的动态和机制。通过这项研究,我们确定了一种毁灭性植物病原体 X. euvesicatoria pv. perforans 的不同铜抗性获取机制以及铜抗性水平。铜抗性通过质粒或染色体整合基因组岛或两者在菌株中的进化和传播,给目前的管理方法带来了障碍,种植者严重依赖铜基杀菌剂来控制病害爆发。在考虑继续使用现有抗菌剂或采用替代抗菌剂以加强农业抗菌剂管理战略时,这方面的知识至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of copper resistance in Xanthomonas euvesicatoria pv. perforans population.

The widespread use of antimicrobials that target bacterial pathogens has driven evolution of resistance, compromising the efficacy of these bactericides. Understanding the emergence and spread of resistance genes via mobile genetic elements is crucial for combating antimicrobial resistance. Copper resistance (CuR) in Xanthomonas euvesicatoria pv. perforans has severely affected the efficacy of copper-based bactericides for controlling bacterial leaf spot disease of tomato and pepper. Here, we investigated the evolutionary pathways of CuR acquisition and dissemination in X. euvesicatoria pv. perforans using an extensive collection of strains. We determined that chromosomally encoded CuR predominates over plasmid-borne CuR in multiple distinct phylogenetic groups of X. euvesicatoria pv. perforans. Our analysis revealed a single site of chromosomal integration by a CuR genomic island, although the genomic island showed sequence variation among phylogenetic groups. While chromosomal CuR was more prevalent, strains with plasmid-borne resistance conferred greater copper tolerance. Additionally, we identified strains carrying two copies of CuR genes, on plasmid and chromosome, that exhibited increased copper tolerance. Strains of X. euvesicatoria pv. perforans from the USA shared identical CuR gene sequences whether on plasmids or chromosome while different alleles were found in strains from other countries. In contrast to X. euvesicatoria pv. perforans, plasmid-borne CuR predominated in closely related pathovar, X. euvesicatoria pv. euvesicatoria. Overall, these findings contribute to a better understanding of the evolution and persistence of CuR in X. euvesicatoria pv. perforans and its closest relatives.IMPORTANCEThe emergence of antimicrobial resistance is a significant threat to agricultural production as it reduces the efficacy of various antimicrobials including copper-based bactericides that are widely used to control plant diseases. The challenge of increasing antimicrobial resistance entering a production system necessitates a deeper understanding of the dynamics and mechanisms by which pathogens acquire resistance. As a result of this research, we have identified different mechanisms of copper resistance acquisition as well as levels of copper resistance in a devastating plant pathogen, X. euvesicatoria pv. perforans. The evolution and dissemination of copper resistance in strains through plasmid or chromosomally integrated genomic island or both presents barriers to current management approaches, where growers rely heavily on copper-based bactericides to manage disease outbreaks. This knowledge is crucial when considering the continued use of existing antimicrobials or adopting alternative antimicrobials in efforts to implement enhanced antimicrobial stewardship strategies in agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mSystems
mSystems Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍: mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信