评估独立数据采集质谱法 (DIA-MS) 在鉴定单氨基酸变异方面的应用。

IF 4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ivo Fierro-Monti, Klemens Fröhlich, Christian Schori, Alexander Schmidt
{"title":"评估独立数据采集质谱法 (DIA-MS) 在鉴定单氨基酸变异方面的应用。","authors":"Ivo Fierro-Monti, Klemens Fröhlich, Christian Schori, Alexander Schmidt","doi":"10.3390/proteomes12040033","DOIUrl":null,"url":null,"abstract":"<p><p>Proteogenomics integrates genomic and proteomic data to elucidate cellular processes by identifying variant peptides, including single amino acid variants (SAAVs). In this study, we assessed the capability of data-independent acquisition mass spectrometry (DIA-MS) to identify SAAV peptides in HeLa cells using various search engine pipelines. We developed a customised sequence database (DB) incorporating SAAV sequences from the HeLa genome and conducted searches using DIA-NN, Spectronaut, and Fragpipe-MSFragger. Our evaluation focused on identifying true positive SAAV peptides and false positives through entrapment DBs. This study revealed that DIA-MS provides reproducible and comprehensive coverage of the proteome, identifying a substantial proportion of SAAV peptides. Notably, the DIA-MS searches maintained consistent identification of SAAV peptides despite varying sizes of the entrapment DB. A comparative analysis showed that Fragpipe-MSFragger (FP-DIA) demonstrated the most conservative and effective performance, exhibiting the lowest false discovery match ratio (FDMR). Additionally, integrating DIA and data-dependent acquisition (DDA) MS data search outputs enhanced SAAV peptide identification, with a lower false discovery rate (FDR) observed in DDA searches. The validation using stable isotope dilution and parallel reaction monitoring (SID-PRM) confirmed the SAAV peptides identified by DIA-MS and DDA-MS searches, highlighting the reliability of our approach. Our findings underscore the effectiveness of DIA-MS in proteogenomic workflows for identifying SAAV peptides, offering insights into optimising search engine pipelines and DB construction for accurate proteomics analysis. These methodologies advance the understanding of proteome variability, contributing to cancer research and the identification of novel proteoform therapeutic targets.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"12 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587465/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessment of Data-Independent Acquisition Mass Spectrometry (DIA-MS) for the Identification of Single Amino Acid Variants.\",\"authors\":\"Ivo Fierro-Monti, Klemens Fröhlich, Christian Schori, Alexander Schmidt\",\"doi\":\"10.3390/proteomes12040033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteogenomics integrates genomic and proteomic data to elucidate cellular processes by identifying variant peptides, including single amino acid variants (SAAVs). In this study, we assessed the capability of data-independent acquisition mass spectrometry (DIA-MS) to identify SAAV peptides in HeLa cells using various search engine pipelines. We developed a customised sequence database (DB) incorporating SAAV sequences from the HeLa genome and conducted searches using DIA-NN, Spectronaut, and Fragpipe-MSFragger. Our evaluation focused on identifying true positive SAAV peptides and false positives through entrapment DBs. This study revealed that DIA-MS provides reproducible and comprehensive coverage of the proteome, identifying a substantial proportion of SAAV peptides. Notably, the DIA-MS searches maintained consistent identification of SAAV peptides despite varying sizes of the entrapment DB. A comparative analysis showed that Fragpipe-MSFragger (FP-DIA) demonstrated the most conservative and effective performance, exhibiting the lowest false discovery match ratio (FDMR). Additionally, integrating DIA and data-dependent acquisition (DDA) MS data search outputs enhanced SAAV peptide identification, with a lower false discovery rate (FDR) observed in DDA searches. The validation using stable isotope dilution and parallel reaction monitoring (SID-PRM) confirmed the SAAV peptides identified by DIA-MS and DDA-MS searches, highlighting the reliability of our approach. Our findings underscore the effectiveness of DIA-MS in proteogenomic workflows for identifying SAAV peptides, offering insights into optimising search engine pipelines and DB construction for accurate proteomics analysis. These methodologies advance the understanding of proteome variability, contributing to cancer research and the identification of novel proteoform therapeutic targets.</p>\",\"PeriodicalId\":20877,\"journal\":{\"name\":\"Proteomes\",\"volume\":\"12 4\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587465/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/proteomes12040033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes12040033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质组学整合了基因组学和蛋白质组学数据,通过识别变异肽,包括单氨基酸变体(SAAVs)来阐明细胞过程。在本研究中,我们利用各种搜索引擎管道评估了数据独立采集质谱(DIA-MS)识别 HeLa 细胞中 SAAV 肽段的能力。我们开发了一个包含 HeLa 基因组中 SAAV 序列的定制序列数据库(DB),并使用 DIA-NN、Spectronaut 和 Fragpipe-MSFragger 进行了搜索。我们的评估重点是识别 SAAV 肽的真阳性和通过夹带 DB 的假阳性。这项研究表明,DIA-MS 可重复且全面地覆盖蛋白质组,识别出相当一部分 SAAV 肽段。值得注意的是,尽管夹带 DB 大小不一,DIA-MS 搜索仍能保持对 SAAV 肽段的一致鉴定。比较分析表明,Fragpipe-MSFragger(FP-DIA)表现出了最保守、最有效的性能,显示出最低的错误发现匹配率(FDMR)。此外,整合 DIA 和数据依赖性采集(DDA)MS 数据搜索输出增强了 SAAV 肽的鉴定,在 DDA 搜索中观察到较低的错误发现率(FDR)。使用稳定同位素稀释和平行反应监测(SID-PRM)进行的验证证实了通过 DIA-MS 和 DDA-MS 搜索鉴定出的 SAAV 肽,突出了我们方法的可靠性。我们的发现强调了 DIA-MS 在蛋白质组学工作流程中鉴定 SAAV 肽段的有效性,为优化搜索引擎管道和数据库构建以进行准确的蛋白质组学分析提供了启示。这些方法促进了对蛋白质组变异性的了解,有助于癌症研究和新型蛋白质形式治疗靶点的鉴定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Data-Independent Acquisition Mass Spectrometry (DIA-MS) for the Identification of Single Amino Acid Variants.

Proteogenomics integrates genomic and proteomic data to elucidate cellular processes by identifying variant peptides, including single amino acid variants (SAAVs). In this study, we assessed the capability of data-independent acquisition mass spectrometry (DIA-MS) to identify SAAV peptides in HeLa cells using various search engine pipelines. We developed a customised sequence database (DB) incorporating SAAV sequences from the HeLa genome and conducted searches using DIA-NN, Spectronaut, and Fragpipe-MSFragger. Our evaluation focused on identifying true positive SAAV peptides and false positives through entrapment DBs. This study revealed that DIA-MS provides reproducible and comprehensive coverage of the proteome, identifying a substantial proportion of SAAV peptides. Notably, the DIA-MS searches maintained consistent identification of SAAV peptides despite varying sizes of the entrapment DB. A comparative analysis showed that Fragpipe-MSFragger (FP-DIA) demonstrated the most conservative and effective performance, exhibiting the lowest false discovery match ratio (FDMR). Additionally, integrating DIA and data-dependent acquisition (DDA) MS data search outputs enhanced SAAV peptide identification, with a lower false discovery rate (FDR) observed in DDA searches. The validation using stable isotope dilution and parallel reaction monitoring (SID-PRM) confirmed the SAAV peptides identified by DIA-MS and DDA-MS searches, highlighting the reliability of our approach. Our findings underscore the effectiveness of DIA-MS in proteogenomic workflows for identifying SAAV peptides, offering insights into optimising search engine pipelines and DB construction for accurate proteomics analysis. These methodologies advance the understanding of proteome variability, contributing to cancer research and the identification of novel proteoform therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteomes
Proteomes Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍: Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信