Pilar López-Úbeda, Teodoro Martín-Noguerol, Alba Ruiz-Vinuesa, Antonio Luna
{"title":"将甲状腺结节特征纳入基于超声报告的 ACR TI-RADS 自动分类大型语言模型的附加值。","authors":"Pilar López-Úbeda, Teodoro Martín-Noguerol, Alba Ruiz-Vinuesa, Antonio Luna","doi":"10.1007/s11604-024-01707-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The ACR Thyroid Imaging, Reporting, and Data System (TI-RADS) uses a score based on ultrasound (US) imaging to stratify the risk of nodule malignancy and recommend appropriate follow-up. This study aims to analyze US reports and explore how Natural Language Processing (NLP) leveraging Transformers models can classify ACR TI-RADS from text reports using the description of thyroid nodule features.</p><p><strong>Materials and methods: </strong>This retrospective study evaluated 16,847 thyroid-free text reports from our institution. An automated system, followed by manual review by a radiologist, established baseline annotations by assigning ACR TI-RADS categories from 1 to 5. Two types of systems were evaluated and compared in the dataset. The first by performing a multiclass classification to detect the associated ACR TI-RADS, and the second by extracting thyroid nodule features from the textual reports and incorporating them into the classifier.</p><p><strong>Results: </strong>Our study showed that models enhanced with specific features systematically outperformed those without. Particularly, the BERTIN model, to which additional features were added, achieved the highest level of accuracy, with a score of 0.8426. Moreover, we found a correlation between the presence of punctate echogenic foci, a feature often linked to malignant thyroid lesions, and increased ACR TI-RADS scores.</p><p><strong>Conclusions: </strong>The features of the thyroid nodules described in thyroid US reports, such as composition, echogenicity, shape, margin or echogenic foci, help the NLP classifier to predict the associated ACR TI-RADS most accurately.</p>","PeriodicalId":14691,"journal":{"name":"Japanese Journal of Radiology","volume":" ","pages":"593-602"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The added value of including thyroid nodule features into large language models for automatic ACR TI-RADS classification based on ultrasound reports.\",\"authors\":\"Pilar López-Úbeda, Teodoro Martín-Noguerol, Alba Ruiz-Vinuesa, Antonio Luna\",\"doi\":\"10.1007/s11604-024-01707-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The ACR Thyroid Imaging, Reporting, and Data System (TI-RADS) uses a score based on ultrasound (US) imaging to stratify the risk of nodule malignancy and recommend appropriate follow-up. This study aims to analyze US reports and explore how Natural Language Processing (NLP) leveraging Transformers models can classify ACR TI-RADS from text reports using the description of thyroid nodule features.</p><p><strong>Materials and methods: </strong>This retrospective study evaluated 16,847 thyroid-free text reports from our institution. An automated system, followed by manual review by a radiologist, established baseline annotations by assigning ACR TI-RADS categories from 1 to 5. Two types of systems were evaluated and compared in the dataset. The first by performing a multiclass classification to detect the associated ACR TI-RADS, and the second by extracting thyroid nodule features from the textual reports and incorporating them into the classifier.</p><p><strong>Results: </strong>Our study showed that models enhanced with specific features systematically outperformed those without. Particularly, the BERTIN model, to which additional features were added, achieved the highest level of accuracy, with a score of 0.8426. Moreover, we found a correlation between the presence of punctate echogenic foci, a feature often linked to malignant thyroid lesions, and increased ACR TI-RADS scores.</p><p><strong>Conclusions: </strong>The features of the thyroid nodules described in thyroid US reports, such as composition, echogenicity, shape, margin or echogenic foci, help the NLP classifier to predict the associated ACR TI-RADS most accurately.</p>\",\"PeriodicalId\":14691,\"journal\":{\"name\":\"Japanese Journal of Radiology\",\"volume\":\" \",\"pages\":\"593-602\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11604-024-01707-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-024-01707-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The added value of including thyroid nodule features into large language models for automatic ACR TI-RADS classification based on ultrasound reports.
Objective: The ACR Thyroid Imaging, Reporting, and Data System (TI-RADS) uses a score based on ultrasound (US) imaging to stratify the risk of nodule malignancy and recommend appropriate follow-up. This study aims to analyze US reports and explore how Natural Language Processing (NLP) leveraging Transformers models can classify ACR TI-RADS from text reports using the description of thyroid nodule features.
Materials and methods: This retrospective study evaluated 16,847 thyroid-free text reports from our institution. An automated system, followed by manual review by a radiologist, established baseline annotations by assigning ACR TI-RADS categories from 1 to 5. Two types of systems were evaluated and compared in the dataset. The first by performing a multiclass classification to detect the associated ACR TI-RADS, and the second by extracting thyroid nodule features from the textual reports and incorporating them into the classifier.
Results: Our study showed that models enhanced with specific features systematically outperformed those without. Particularly, the BERTIN model, to which additional features were added, achieved the highest level of accuracy, with a score of 0.8426. Moreover, we found a correlation between the presence of punctate echogenic foci, a feature often linked to malignant thyroid lesions, and increased ACR TI-RADS scores.
Conclusions: The features of the thyroid nodules described in thyroid US reports, such as composition, echogenicity, shape, margin or echogenic foci, help the NLP classifier to predict the associated ACR TI-RADS most accurately.
期刊介绍:
Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.