Thomas Jefferis, Cihan Dogan, Claire E Miller, Maria Karathanou, Austyn Tempesta, Andrew J Schofield, Howard Bowman
{"title":"图案眩光刺激持续呈现时的过度兴奋敏感化和习惯化。","authors":"Thomas Jefferis, Cihan Dogan, Claire E Miller, Maria Karathanou, Austyn Tempesta, Andrew J Schofield, Howard Bowman","doi":"10.3390/neurolint16060116","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Pattern glare, associated with cortical hyperexcitability, induces visual distortions and discomfort, particularly in individuals susceptible to migraines or epilepsy. While previous research has primarily focused on transient EEG responses to patterned stimuli, this study aims to investigate how continuous presentation of pattern-glare stimuli affects neural adaptation over both fine (seconds) and coarse (entire experiment) temporal scales.</p><p><strong>Methods: </strong>EEG recordings were obtained from 40 healthy participants exposed to horizontal square-wave gratings at three spatial frequencies presented continuously for three seconds each across multiple trials. Participants' susceptibility to visual stress, headaches, and discomfort was assessed using questionnaires before and during the experiment. The experiment employed a two-by-two design to evaluate habituation (exponentially decreasing response) and sensitisation (exponentially increasing response) effects at two different time granularities. Mass univariate analysis with cluster-based permutation tests was conducted to identify significant brain response changes during the period of constant stimulation, which we call the DC-shift period.</p><p><strong>Results: </strong>Significant effects were observed during the DC-shift period, indicating sustained hyper-excitation to the medium-pattern glare stimulus. In particular, the mean/intercept analysis revealed a consistent positive-going response to the medium stimulus throughout the DC-shift period, suggesting continued neural engagement. Participants reporting higher discomfort exhibited sensitisation at fine temporal granularity and habituation at coarser temporal granularity. These effects were predominantly localised to the right posterior scalp regions.</p><p><strong>Conclusions: </strong>The study demonstrates that individuals sensitive to pattern-glare stimuli exhibit dynamic neural adaptation characterised by short-term sensitisation and long-term habituation. These findings enhance the understanding of cortical hyperexcitability mechanisms and may inform future interventions for visual-stress-related conditions, such as migraines and epilepsy. Further research is needed to explore the underlying neural processes and validate these effects in clinical populations.</p>","PeriodicalId":19130,"journal":{"name":"Neurology International","volume":"16 6","pages":"1585-1610"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587462/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sensitization and Habituation of Hyper-Excitation to Constant Presentation of Pattern-Glare Stimuli.\",\"authors\":\"Thomas Jefferis, Cihan Dogan, Claire E Miller, Maria Karathanou, Austyn Tempesta, Andrew J Schofield, Howard Bowman\",\"doi\":\"10.3390/neurolint16060116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/objectives: </strong>Pattern glare, associated with cortical hyperexcitability, induces visual distortions and discomfort, particularly in individuals susceptible to migraines or epilepsy. While previous research has primarily focused on transient EEG responses to patterned stimuli, this study aims to investigate how continuous presentation of pattern-glare stimuli affects neural adaptation over both fine (seconds) and coarse (entire experiment) temporal scales.</p><p><strong>Methods: </strong>EEG recordings were obtained from 40 healthy participants exposed to horizontal square-wave gratings at three spatial frequencies presented continuously for three seconds each across multiple trials. Participants' susceptibility to visual stress, headaches, and discomfort was assessed using questionnaires before and during the experiment. The experiment employed a two-by-two design to evaluate habituation (exponentially decreasing response) and sensitisation (exponentially increasing response) effects at two different time granularities. Mass univariate analysis with cluster-based permutation tests was conducted to identify significant brain response changes during the period of constant stimulation, which we call the DC-shift period.</p><p><strong>Results: </strong>Significant effects were observed during the DC-shift period, indicating sustained hyper-excitation to the medium-pattern glare stimulus. In particular, the mean/intercept analysis revealed a consistent positive-going response to the medium stimulus throughout the DC-shift period, suggesting continued neural engagement. Participants reporting higher discomfort exhibited sensitisation at fine temporal granularity and habituation at coarser temporal granularity. These effects were predominantly localised to the right posterior scalp regions.</p><p><strong>Conclusions: </strong>The study demonstrates that individuals sensitive to pattern-glare stimuli exhibit dynamic neural adaptation characterised by short-term sensitisation and long-term habituation. These findings enhance the understanding of cortical hyperexcitability mechanisms and may inform future interventions for visual-stress-related conditions, such as migraines and epilepsy. Further research is needed to explore the underlying neural processes and validate these effects in clinical populations.</p>\",\"PeriodicalId\":19130,\"journal\":{\"name\":\"Neurology International\",\"volume\":\"16 6\",\"pages\":\"1585-1610\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587462/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurology International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/neurolint16060116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurolint16060116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Sensitization and Habituation of Hyper-Excitation to Constant Presentation of Pattern-Glare Stimuli.
Background/objectives: Pattern glare, associated with cortical hyperexcitability, induces visual distortions and discomfort, particularly in individuals susceptible to migraines or epilepsy. While previous research has primarily focused on transient EEG responses to patterned stimuli, this study aims to investigate how continuous presentation of pattern-glare stimuli affects neural adaptation over both fine (seconds) and coarse (entire experiment) temporal scales.
Methods: EEG recordings were obtained from 40 healthy participants exposed to horizontal square-wave gratings at three spatial frequencies presented continuously for three seconds each across multiple trials. Participants' susceptibility to visual stress, headaches, and discomfort was assessed using questionnaires before and during the experiment. The experiment employed a two-by-two design to evaluate habituation (exponentially decreasing response) and sensitisation (exponentially increasing response) effects at two different time granularities. Mass univariate analysis with cluster-based permutation tests was conducted to identify significant brain response changes during the period of constant stimulation, which we call the DC-shift period.
Results: Significant effects were observed during the DC-shift period, indicating sustained hyper-excitation to the medium-pattern glare stimulus. In particular, the mean/intercept analysis revealed a consistent positive-going response to the medium stimulus throughout the DC-shift period, suggesting continued neural engagement. Participants reporting higher discomfort exhibited sensitisation at fine temporal granularity and habituation at coarser temporal granularity. These effects were predominantly localised to the right posterior scalp regions.
Conclusions: The study demonstrates that individuals sensitive to pattern-glare stimuli exhibit dynamic neural adaptation characterised by short-term sensitisation and long-term habituation. These findings enhance the understanding of cortical hyperexcitability mechanisms and may inform future interventions for visual-stress-related conditions, such as migraines and epilepsy. Further research is needed to explore the underlying neural processes and validate these effects in clinical populations.