Youngran Seo, Ken Fowler, Leah M. Flick, Tracy A. Withers, Barbara Savoldo, Karen McKinnon, Marie A. Iannone
{"title":"用硒和碲同位素对有活力的外周血单核细胞进行条形编码,用于质量细胞计量学实验。","authors":"Youngran Seo, Ken Fowler, Leah M. Flick, Tracy A. Withers, Barbara Savoldo, Karen McKinnon, Marie A. Iannone","doi":"10.1002/cyto.a.24907","DOIUrl":null,"url":null,"abstract":"<p>Barcoding viable cells combined with pooled sample staining is an effective technique that eliminates batch effects from serial cell staining and facilitates uninterrupted data acquisition. We describe three novel and isotopically pure selenium-containing compounds (SeMals) that are useful cellular labeling tools. The maleimide-functionalized selenophenes (<sup>76</sup>SeMal, <sup>77</sup>SeMal, and <sup>78</sup>SeMal) covalently react with cellular sulfhydryl groups and uniquely label cell samples. The SeMal reagents label viable and paraformaldehyde-fixed peripheral blood mononuclear cells (PBMC), are well resolved by the mass cytometer, and have little spill into adjacent channels. They appear non-toxic to viable cells at working concentrations. We used SeMal reagents in combination with four isotopically pure tellurium maleimide reagents (<sup>124</sup>TeMal, <sup>126</sup>TeMal, <sup>128</sup>TeMal, and <sup>130</sup>TeMal) to label 21 individual PBMC samples with unique combinations of selenium and tellurium isotopes (seven donors with three replicates using a 7 isotope pick 2 combinatorial schema). The individually barcoded samples were pooled, stained with an antibody cocktail as a pool, and acquired on the mass cytometer as a single suspension. The single-cell data were de-barcoded into separate sample-specific files after data acquisition, enabling an uninterrupted instrument run. Each donor sample retained its unique phenotypic profile with excellent replicate reproducibility. Unlike current live cell barcoding methods, this approach does not require antibodies to surface markers, allowing for the labeling of all cells regardless of surface antigen expression. Additionally, since selenium and tellurium isotopes are not currently utilized in CyTOF antibody panels, this method expands barcoding options and frees up commonly used isotopes for more detailed cell profiling.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"105 12","pages":"899-908"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24907","citationCount":"0","resultStr":"{\"title\":\"Barcoding of viable peripheral blood mononuclear cells with selenium and tellurium isotopes for mass cytometry experiments\",\"authors\":\"Youngran Seo, Ken Fowler, Leah M. Flick, Tracy A. Withers, Barbara Savoldo, Karen McKinnon, Marie A. Iannone\",\"doi\":\"10.1002/cyto.a.24907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Barcoding viable cells combined with pooled sample staining is an effective technique that eliminates batch effects from serial cell staining and facilitates uninterrupted data acquisition. We describe three novel and isotopically pure selenium-containing compounds (SeMals) that are useful cellular labeling tools. The maleimide-functionalized selenophenes (<sup>76</sup>SeMal, <sup>77</sup>SeMal, and <sup>78</sup>SeMal) covalently react with cellular sulfhydryl groups and uniquely label cell samples. The SeMal reagents label viable and paraformaldehyde-fixed peripheral blood mononuclear cells (PBMC), are well resolved by the mass cytometer, and have little spill into adjacent channels. They appear non-toxic to viable cells at working concentrations. We used SeMal reagents in combination with four isotopically pure tellurium maleimide reagents (<sup>124</sup>TeMal, <sup>126</sup>TeMal, <sup>128</sup>TeMal, and <sup>130</sup>TeMal) to label 21 individual PBMC samples with unique combinations of selenium and tellurium isotopes (seven donors with three replicates using a 7 isotope pick 2 combinatorial schema). The individually barcoded samples were pooled, stained with an antibody cocktail as a pool, and acquired on the mass cytometer as a single suspension. The single-cell data were de-barcoded into separate sample-specific files after data acquisition, enabling an uninterrupted instrument run. Each donor sample retained its unique phenotypic profile with excellent replicate reproducibility. Unlike current live cell barcoding methods, this approach does not require antibodies to surface markers, allowing for the labeling of all cells regardless of surface antigen expression. Additionally, since selenium and tellurium isotopes are not currently utilized in CyTOF antibody panels, this method expands barcoding options and frees up commonly used isotopes for more detailed cell profiling.</p>\",\"PeriodicalId\":11068,\"journal\":{\"name\":\"Cytometry Part A\",\"volume\":\"105 12\",\"pages\":\"899-908\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24907\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part A\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24907\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24907","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Barcoding of viable peripheral blood mononuclear cells with selenium and tellurium isotopes for mass cytometry experiments
Barcoding viable cells combined with pooled sample staining is an effective technique that eliminates batch effects from serial cell staining and facilitates uninterrupted data acquisition. We describe three novel and isotopically pure selenium-containing compounds (SeMals) that are useful cellular labeling tools. The maleimide-functionalized selenophenes (76SeMal, 77SeMal, and 78SeMal) covalently react with cellular sulfhydryl groups and uniquely label cell samples. The SeMal reagents label viable and paraformaldehyde-fixed peripheral blood mononuclear cells (PBMC), are well resolved by the mass cytometer, and have little spill into adjacent channels. They appear non-toxic to viable cells at working concentrations. We used SeMal reagents in combination with four isotopically pure tellurium maleimide reagents (124TeMal, 126TeMal, 128TeMal, and 130TeMal) to label 21 individual PBMC samples with unique combinations of selenium and tellurium isotopes (seven donors with three replicates using a 7 isotope pick 2 combinatorial schema). The individually barcoded samples were pooled, stained with an antibody cocktail as a pool, and acquired on the mass cytometer as a single suspension. The single-cell data were de-barcoded into separate sample-specific files after data acquisition, enabling an uninterrupted instrument run. Each donor sample retained its unique phenotypic profile with excellent replicate reproducibility. Unlike current live cell barcoding methods, this approach does not require antibodies to surface markers, allowing for the labeling of all cells regardless of surface antigen expression. Additionally, since selenium and tellurium isotopes are not currently utilized in CyTOF antibody panels, this method expands barcoding options and frees up commonly used isotopes for more detailed cell profiling.
期刊介绍:
Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques.
The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome:
Biomedical Instrumentation Engineering
Biophotonics
Bioinformatics
Cell Biology
Computational Biology
Data Science
Immunology
Parasitology
Microbiology
Neuroscience
Cancer
Stem Cells
Tissue Regeneration.