{"title":"TriTan:一种用于单细胞多组学数据综合分析的高效三重非负矩阵因式分解方法。","authors":"Xin Ma, Lijing Lin, Qian Zhao, Mudassar Iqbal","doi":"10.1093/bib/bbae615","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell multiomics have opened up tremendous opportunities for understanding gene regulatory networks underlying cell states by simultaneously profiling transcriptomes, epigenomes, and proteomes of the same cell. However, existing computational methods for integrative analysis of these high-dimensional multiomics data are either computationally expensive or limited in interpretation. These limitations pose challenges in the implementation of these methods in large-scale studies and hinder a more in-depth understanding of the underlying regulatory mechanisms. Here, we propose TriTan (Triple inTegrative fast non-negative matrix factorization), an efficient joint factorization method for single-cell multiomics data. TriTan implements a highly efficient factorization algorithm, greatly improving its computational performance. Three matrix factorization produced by TriTan helps in clustering cells, identifying signature features for each cell type, and uncovering feature associations across omics, which facilitates the identification of domains of regulatory chromatin and the prediction of cell-type-specific regulatory networks. We applied TriTan to the single-cell multiomics data obtained from different technologies and benchmarked it against the state-of-the-art methods where it shows highly competitive performance. Furthermore, we showed a range of downstream analyses conducted utilizing TriTan outputs, highlighting its capacity to facilitate interpretation in biological discovery.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586128/pdf/","citationCount":"0","resultStr":"{\"title\":\"TriTan: an efficient triple nonnegative matrix factorization method for integrative analysis of single-cell multiomics data.\",\"authors\":\"Xin Ma, Lijing Lin, Qian Zhao, Mudassar Iqbal\",\"doi\":\"10.1093/bib/bbae615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell multiomics have opened up tremendous opportunities for understanding gene regulatory networks underlying cell states by simultaneously profiling transcriptomes, epigenomes, and proteomes of the same cell. However, existing computational methods for integrative analysis of these high-dimensional multiomics data are either computationally expensive or limited in interpretation. These limitations pose challenges in the implementation of these methods in large-scale studies and hinder a more in-depth understanding of the underlying regulatory mechanisms. Here, we propose TriTan (Triple inTegrative fast non-negative matrix factorization), an efficient joint factorization method for single-cell multiomics data. TriTan implements a highly efficient factorization algorithm, greatly improving its computational performance. Three matrix factorization produced by TriTan helps in clustering cells, identifying signature features for each cell type, and uncovering feature associations across omics, which facilitates the identification of domains of regulatory chromatin and the prediction of cell-type-specific regulatory networks. We applied TriTan to the single-cell multiomics data obtained from different technologies and benchmarked it against the state-of-the-art methods where it shows highly competitive performance. Furthermore, we showed a range of downstream analyses conducted utilizing TriTan outputs, highlighting its capacity to facilitate interpretation in biological discovery.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586128/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae615\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae615","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
TriTan: an efficient triple nonnegative matrix factorization method for integrative analysis of single-cell multiomics data.
Single-cell multiomics have opened up tremendous opportunities for understanding gene regulatory networks underlying cell states by simultaneously profiling transcriptomes, epigenomes, and proteomes of the same cell. However, existing computational methods for integrative analysis of these high-dimensional multiomics data are either computationally expensive or limited in interpretation. These limitations pose challenges in the implementation of these methods in large-scale studies and hinder a more in-depth understanding of the underlying regulatory mechanisms. Here, we propose TriTan (Triple inTegrative fast non-negative matrix factorization), an efficient joint factorization method for single-cell multiomics data. TriTan implements a highly efficient factorization algorithm, greatly improving its computational performance. Three matrix factorization produced by TriTan helps in clustering cells, identifying signature features for each cell type, and uncovering feature associations across omics, which facilitates the identification of domains of regulatory chromatin and the prediction of cell-type-specific regulatory networks. We applied TriTan to the single-cell multiomics data obtained from different technologies and benchmarked it against the state-of-the-art methods where it shows highly competitive performance. Furthermore, we showed a range of downstream analyses conducted utilizing TriTan outputs, highlighting its capacity to facilitate interpretation in biological discovery.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.