利用远程心动图信号相似性进行面部和颈部区域分析以进行深度伪装检测

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Byeong Seon An, Hyeji Lim, Hyeon Ah Seong, Eui Chul Lee
{"title":"利用远程心动图信号相似性进行面部和颈部区域分析以进行深度伪装检测","authors":"Byeong Seon An,&nbsp;Hyeji Lim,&nbsp;Hyeon Ah Seong,&nbsp;Eui Chul Lee","doi":"10.1049/bme2/7095412","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Deepfake (DF) involves utilizing artificial intelligence (AI) technology to synthesize or manipulate images, voices, and other human or object data. However, recent times have seen a surge in instances of DF technology misuse, raising concerns about cybercrime and the credibility of manipulated information. The objective of this study is to devise a method that employs remote photoplethysmography (rPPG) biosignals for DF detection. The face was divided into five regions based on landmarks, with automatic extraction performed on the neck region. We conducted rPPG signal extraction from each facial area and the neck region was defined as the ground truth. The five signals extracted from the face were used as inputs to an support vector machine (SVM) model by calculating the euclidean distance between each signal and the signal extracted from the neck region, measuring rPPG signal similarity with five features. Our approach demonstrated robust performance with an area under the curve (AUC) score of 91.2% on the audio-driven dataset and 99.7% on the face swapping generative adversarial network (FSGAN) dataset, even though we only used datasets excluding DF techniques that can be visually identified in Korean DF Detection Dataset (KoDF). Therefore, our research findings demonstrate that similarity features of rPPG signals can be utilized as key features for detecting DFs.</p>\n </div>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"2024 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2/7095412","citationCount":"0","resultStr":"{\"title\":\"Facial and Neck Region Analysis for Deepfake Detection Using Remote Photoplethysmography Signal Similarity\",\"authors\":\"Byeong Seon An,&nbsp;Hyeji Lim,&nbsp;Hyeon Ah Seong,&nbsp;Eui Chul Lee\",\"doi\":\"10.1049/bme2/7095412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Deepfake (DF) involves utilizing artificial intelligence (AI) technology to synthesize or manipulate images, voices, and other human or object data. However, recent times have seen a surge in instances of DF technology misuse, raising concerns about cybercrime and the credibility of manipulated information. The objective of this study is to devise a method that employs remote photoplethysmography (rPPG) biosignals for DF detection. The face was divided into five regions based on landmarks, with automatic extraction performed on the neck region. We conducted rPPG signal extraction from each facial area and the neck region was defined as the ground truth. The five signals extracted from the face were used as inputs to an support vector machine (SVM) model by calculating the euclidean distance between each signal and the signal extracted from the neck region, measuring rPPG signal similarity with five features. Our approach demonstrated robust performance with an area under the curve (AUC) score of 91.2% on the audio-driven dataset and 99.7% on the face swapping generative adversarial network (FSGAN) dataset, even though we only used datasets excluding DF techniques that can be visually identified in Korean DF Detection Dataset (KoDF). Therefore, our research findings demonstrate that similarity features of rPPG signals can be utilized as key features for detecting DFs.</p>\\n </div>\",\"PeriodicalId\":48821,\"journal\":{\"name\":\"IET Biometrics\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2/7095412\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Biometrics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bme2/7095412\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2/7095412","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度伪造(DF)是指利用人工智能(AI)技术合成或篡改图像、声音和其他人类或物体数据。然而,近来DF技术被滥用的情况激增,引发了人们对网络犯罪和被篡改信息可信度的担忧。本研究的目的是设计一种方法,利用远程光感(rPPG)生物信号进行 DF 检测。根据地标将面部分为五个区域,并对颈部区域进行自动提取。我们对每个面部区域进行了 rPPG 信号提取,并将颈部区域定义为地面实况。从面部提取的五个信号被用作支持向量机 (SVM) 模型的输入,方法是计算每个信号与从颈部提取的信号之间的欧氏距离,用五个特征来衡量 rPPG 信号的相似性。尽管我们只使用了不包括韩国 DF 检测数据集(KoDF)中可直观识别的 DF 技术的数据集,但我们的方法在音频驱动数据集和人脸交换生成对抗网络(FSGAN)数据集上分别获得了 91.2% 和 99.7% 的曲线下面积(AUC)分数,表现出了稳健的性能。因此,我们的研究结果表明,rPPG 信号的相似性特征可用作检测 DF 的关键特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Facial and Neck Region Analysis for Deepfake Detection Using Remote Photoplethysmography Signal Similarity

Facial and Neck Region Analysis for Deepfake Detection Using Remote Photoplethysmography Signal Similarity

Deepfake (DF) involves utilizing artificial intelligence (AI) technology to synthesize or manipulate images, voices, and other human or object data. However, recent times have seen a surge in instances of DF technology misuse, raising concerns about cybercrime and the credibility of manipulated information. The objective of this study is to devise a method that employs remote photoplethysmography (rPPG) biosignals for DF detection. The face was divided into five regions based on landmarks, with automatic extraction performed on the neck region. We conducted rPPG signal extraction from each facial area and the neck region was defined as the ground truth. The five signals extracted from the face were used as inputs to an support vector machine (SVM) model by calculating the euclidean distance between each signal and the signal extracted from the neck region, measuring rPPG signal similarity with five features. Our approach demonstrated robust performance with an area under the curve (AUC) score of 91.2% on the audio-driven dataset and 99.7% on the face swapping generative adversarial network (FSGAN) dataset, even though we only used datasets excluding DF techniques that can be visually identified in Korean DF Detection Dataset (KoDF). Therefore, our research findings demonstrate that similarity features of rPPG signals can be utilized as key features for detecting DFs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信