通过被动俯仰减轻不稳定载荷

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Yabin Liu , Riccardo Broglia , Anna M. Young , Edward D. McCarthy , Ignazio Maria Viola
{"title":"通过被动俯仰减轻不稳定载荷","authors":"Yabin Liu ,&nbsp;Riccardo Broglia ,&nbsp;Anna M. Young ,&nbsp;Edward D. McCarthy ,&nbsp;Ignazio Maria Viola","doi":"10.1016/j.jfluidstructs.2024.104216","DOIUrl":null,"url":null,"abstract":"<div><div>Mitigation of load fluctuations due to flow unsteadiness is critical in a broad range of applications, including wind/tidal turbines, and aerial/underwater vehicles. While the use of active control systems is an established practice in engineering, passive systems are not well understood, and the limits of their efficacy are yet to be ascertained. To this end, the present study aims to provide new insights into the effectiveness of passive pitching in the mitigation of lift fluctuations in the most demanding case of fast, high-amplitude variations of the free stream speed and direction. We perform fluid-structure interaction simulations of a two-dimensional free-to-pitch rigid foil. Our study reveals that the lift amplitude of the force fluctuations can be decreased by at least two-thirds through passive pitching. The efficacy of the unsteady load mitigation is only weakly dependent on the exact pitching axis location, and the optimal position is upstream and close to the axis of the foil. These results may inform the design of passive control systems of wind/tidal turbines and aerial/underwater vehicles and provide new insights into interpreting the control strategy of natural flyers such as insects and birds.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"131 ","pages":"Article 104216"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsteady load mitigation through passive pitch\",\"authors\":\"Yabin Liu ,&nbsp;Riccardo Broglia ,&nbsp;Anna M. Young ,&nbsp;Edward D. McCarthy ,&nbsp;Ignazio Maria Viola\",\"doi\":\"10.1016/j.jfluidstructs.2024.104216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mitigation of load fluctuations due to flow unsteadiness is critical in a broad range of applications, including wind/tidal turbines, and aerial/underwater vehicles. While the use of active control systems is an established practice in engineering, passive systems are not well understood, and the limits of their efficacy are yet to be ascertained. To this end, the present study aims to provide new insights into the effectiveness of passive pitching in the mitigation of lift fluctuations in the most demanding case of fast, high-amplitude variations of the free stream speed and direction. We perform fluid-structure interaction simulations of a two-dimensional free-to-pitch rigid foil. Our study reveals that the lift amplitude of the force fluctuations can be decreased by at least two-thirds through passive pitching. The efficacy of the unsteady load mitigation is only weakly dependent on the exact pitching axis location, and the optimal position is upstream and close to the axis of the foil. These results may inform the design of passive control systems of wind/tidal turbines and aerial/underwater vehicles and provide new insights into interpreting the control strategy of natural flyers such as insects and birds.</div></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":\"131 \",\"pages\":\"Article 104216\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624001518\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001518","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在包括风力/潮汐涡轮机和航空/水下航行器在内的多种应用中,减缓因流动不稳定性引起的负载波动至关重要。虽然使用主动控制系统是工程领域的惯例,但人们对被动系统的了解并不多,其功效的局限性也有待确定。为此,本研究旨在对被动俯仰系统在自由流速度和方向快速、高振幅变化的最苛刻情况下减缓升力波动的有效性提供新的见解。我们对二维自由俯仰刚性箔片进行了流固耦合模拟。我们的研究表明,通过被动俯仰,力波动的升力振幅至少可以降低三分之二。减轻非稳定载荷的效果只与俯仰轴的具体位置有微弱的关系,最佳位置在箔片轴线的上游和附近。这些结果可为风力/潮汐涡轮机和空中/水下飞行器被动控制系统的设计提供参考,并为解读昆虫和鸟类等自然飞行器的控制策略提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsteady load mitigation through passive pitch
Mitigation of load fluctuations due to flow unsteadiness is critical in a broad range of applications, including wind/tidal turbines, and aerial/underwater vehicles. While the use of active control systems is an established practice in engineering, passive systems are not well understood, and the limits of their efficacy are yet to be ascertained. To this end, the present study aims to provide new insights into the effectiveness of passive pitching in the mitigation of lift fluctuations in the most demanding case of fast, high-amplitude variations of the free stream speed and direction. We perform fluid-structure interaction simulations of a two-dimensional free-to-pitch rigid foil. Our study reveals that the lift amplitude of the force fluctuations can be decreased by at least two-thirds through passive pitching. The efficacy of the unsteady load mitigation is only weakly dependent on the exact pitching axis location, and the optimal position is upstream and close to the axis of the foil. These results may inform the design of passive control systems of wind/tidal turbines and aerial/underwater vehicles and provide new insights into interpreting the control strategy of natural flyers such as insects and birds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信