ReUNet:用于矿物加工中精确矿石分割的高效深度学习

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chanjuan Wang , Huilan Luo , Jiyuan Wang , Daniel Groom
{"title":"ReUNet:用于矿物加工中精确矿石分割的高效深度学习","authors":"Chanjuan Wang ,&nbsp;Huilan Luo ,&nbsp;Jiyuan Wang ,&nbsp;Daniel Groom","doi":"10.1016/j.cageo.2024.105773","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient ore segmentation plays a pivotal role in advancing mineral processing technologies. With the rise of computer vision, deep learning models like UNet have increasingly outperformed traditional methods in automatic segmentation tasks. Despite these advancements, the substantial computational demands of such models have hindered their widespread adoption in practical production environments. To overcome this limitation, we developed ReUNet, a lightweight and efficient model tailored for mineral image segmentation. ReUNet optimizes computational efficiency by selectively focusing on critical spatial and channel information, boasting only 1.7 million parameters and 24.88 GFLOPS. It delivers superior segmentation performance across three public datasets (CuV1, FeMV1, and Pellets) and achieves the most accurate average particle size estimation, closely matching the true values. Our findings underscore ReUNet’s potential as a highly effective tool for mineral image analysis, offering both precision and efficiency in processing mineral images.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"195 ","pages":"Article 105773"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ReUNet: Efficient deep learning for precise ore segmentation in mineral processing\",\"authors\":\"Chanjuan Wang ,&nbsp;Huilan Luo ,&nbsp;Jiyuan Wang ,&nbsp;Daniel Groom\",\"doi\":\"10.1016/j.cageo.2024.105773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient ore segmentation plays a pivotal role in advancing mineral processing technologies. With the rise of computer vision, deep learning models like UNet have increasingly outperformed traditional methods in automatic segmentation tasks. Despite these advancements, the substantial computational demands of such models have hindered their widespread adoption in practical production environments. To overcome this limitation, we developed ReUNet, a lightweight and efficient model tailored for mineral image segmentation. ReUNet optimizes computational efficiency by selectively focusing on critical spatial and channel information, boasting only 1.7 million parameters and 24.88 GFLOPS. It delivers superior segmentation performance across three public datasets (CuV1, FeMV1, and Pellets) and achieves the most accurate average particle size estimation, closely matching the true values. Our findings underscore ReUNet’s potential as a highly effective tool for mineral image analysis, offering both precision and efficiency in processing mineral images.</div></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"195 \",\"pages\":\"Article 105773\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424002565\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002565","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

高效的矿石分割在推动矿物加工技术发展方面发挥着举足轻重的作用。随着计算机视觉技术的兴起,UNet 等深度学习模型在自动分割任务中的表现越来越优于传统方法。尽管取得了这些进步,但此类模型的大量计算需求阻碍了它们在实际生产环境中的广泛应用。为了克服这一限制,我们开发了 ReUNet,一种专为矿物图像分割定制的轻量级高效模型。ReUNet 通过选择性地关注关键的空间和通道信息来优化计算效率,仅有 170 万个参数和 24.88 GFLOPS。它在三个公共数据集(CuV1、FeMV1 和 Pellets)中提供了卓越的分割性能,并实现了最准确的平均粒度估计,与真实值非常接近。我们的研究结果凸显了 ReUNet 作为矿物图像分析高效工具的潜力,它在处理矿物图像方面既精确又高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ReUNet: Efficient deep learning for precise ore segmentation in mineral processing
Efficient ore segmentation plays a pivotal role in advancing mineral processing technologies. With the rise of computer vision, deep learning models like UNet have increasingly outperformed traditional methods in automatic segmentation tasks. Despite these advancements, the substantial computational demands of such models have hindered their widespread adoption in practical production environments. To overcome this limitation, we developed ReUNet, a lightweight and efficient model tailored for mineral image segmentation. ReUNet optimizes computational efficiency by selectively focusing on critical spatial and channel information, boasting only 1.7 million parameters and 24.88 GFLOPS. It delivers superior segmentation performance across three public datasets (CuV1, FeMV1, and Pellets) and achieves the most accurate average particle size estimation, closely matching the true values. Our findings underscore ReUNet’s potential as a highly effective tool for mineral image analysis, offering both precision and efficiency in processing mineral images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信