{"title":"生成过渡路径的扩散方法","authors":"Luke Triplett, Jianfeng Lu","doi":"10.1016/j.jcp.2024.113590","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we seek to simulate rare transitions between metastable states using score-based generative models. An efficient method for generating high-quality transition paths is valuable for the study of molecular systems since data is often difficult to obtain. We develop two novel methods for path generation in this paper: a chain-based approach and a midpoint-based approach. The first biases the original dynamics to facilitate transitions, while the second mirrors splitting techniques and breaks down the original transition into smaller transitions. Numerical results of generated transition paths for the Müller potential and for Alanine dipeptide demonstrate the effectiveness of these approaches in both the data-rich and data-scarce regimes.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"522 ","pages":"Article 113590"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion methods for generating transition paths\",\"authors\":\"Luke Triplett, Jianfeng Lu\",\"doi\":\"10.1016/j.jcp.2024.113590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we seek to simulate rare transitions between metastable states using score-based generative models. An efficient method for generating high-quality transition paths is valuable for the study of molecular systems since data is often difficult to obtain. We develop two novel methods for path generation in this paper: a chain-based approach and a midpoint-based approach. The first biases the original dynamics to facilitate transitions, while the second mirrors splitting techniques and breaks down the original transition into smaller transitions. Numerical results of generated transition paths for the Müller potential and for Alanine dipeptide demonstrate the effectiveness of these approaches in both the data-rich and data-scarce regimes.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"522 \",\"pages\":\"Article 113590\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124008386\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008386","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
In this work, we seek to simulate rare transitions between metastable states using score-based generative models. An efficient method for generating high-quality transition paths is valuable for the study of molecular systems since data is often difficult to obtain. We develop two novel methods for path generation in this paper: a chain-based approach and a midpoint-based approach. The first biases the original dynamics to facilitate transitions, while the second mirrors splitting techniques and breaks down the original transition into smaller transitions. Numerical results of generated transition paths for the Müller potential and for Alanine dipeptide demonstrate the effectiveness of these approaches in both the data-rich and data-scarce regimes.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.