具有微小对数切线束的复流形上的对数卡坦几何

IF 0.6 4区 数学 Q3 MATHEMATICS
Indranil Biswas , Sorin Dumitrescu , Archana S. Morye
{"title":"具有微小对数切线束的复流形上的对数卡坦几何","authors":"Indranil Biswas ,&nbsp;Sorin Dumitrescu ,&nbsp;Archana S. Morye","doi":"10.1016/j.difgeo.2024.102213","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>M</em> be a compact complex manifold, and <span><math><mi>D</mi><mspace></mspace><mo>⊂</mo><mspace></mspace><mi>M</mi></math></span> a reduced normal crossing divisor on it, such that the logarithmic tangent bundle <span><math><mi>T</mi><mi>M</mi><mo>(</mo><mo>−</mo><mi>log</mi><mo>⁡</mo><mi>D</mi><mo>)</mo></math></span> is holomorphically trivial. Let <span><math><mi>A</mi></math></span> denote the maximal connected subgroup of the group of all holomorphic automorphisms of <em>M</em> that preserve the divisor <em>D</em>. Take a holomorphic Cartan geometry <span><math><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>Θ</mi><mo>)</mo></math></span> of type <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mspace></mspace><mi>H</mi><mo>)</mo></math></span> on <em>M</em>, where <span><math><mi>H</mi><mspace></mspace><mo>⊂</mo><mspace></mspace><mi>G</mi></math></span> are complex Lie groups. We prove that <span><math><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>Θ</mi><mo>)</mo></math></span> is isomorphic to <span><math><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>ρ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>Θ</mi><mo>)</mo></math></span> for every <span><math><mi>ρ</mi><mspace></mspace><mo>∈</mo><mspace></mspace><mi>A</mi></math></span> if and only if the principal <em>H</em>–bundle <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> admits a logarithmic connection Δ singular on <em>D</em> such that Θ is preserved by the connection Δ.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102213"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logarithmic Cartan geometry on complex manifolds with trivial logarithmic tangent bundle\",\"authors\":\"Indranil Biswas ,&nbsp;Sorin Dumitrescu ,&nbsp;Archana S. Morye\",\"doi\":\"10.1016/j.difgeo.2024.102213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>M</em> be a compact complex manifold, and <span><math><mi>D</mi><mspace></mspace><mo>⊂</mo><mspace></mspace><mi>M</mi></math></span> a reduced normal crossing divisor on it, such that the logarithmic tangent bundle <span><math><mi>T</mi><mi>M</mi><mo>(</mo><mo>−</mo><mi>log</mi><mo>⁡</mo><mi>D</mi><mo>)</mo></math></span> is holomorphically trivial. Let <span><math><mi>A</mi></math></span> denote the maximal connected subgroup of the group of all holomorphic automorphisms of <em>M</em> that preserve the divisor <em>D</em>. Take a holomorphic Cartan geometry <span><math><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>Θ</mi><mo>)</mo></math></span> of type <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mspace></mspace><mi>H</mi><mo>)</mo></math></span> on <em>M</em>, where <span><math><mi>H</mi><mspace></mspace><mo>⊂</mo><mspace></mspace><mi>G</mi></math></span> are complex Lie groups. We prove that <span><math><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>Θ</mi><mo>)</mo></math></span> is isomorphic to <span><math><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>ρ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>Θ</mi><mo>)</mo></math></span> for every <span><math><mi>ρ</mi><mspace></mspace><mo>∈</mo><mspace></mspace><mi>A</mi></math></span> if and only if the principal <em>H</em>–bundle <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> admits a logarithmic connection Δ singular on <em>D</em> such that Θ is preserved by the connection Δ.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"97 \",\"pages\":\"Article 102213\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524001062\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524001062","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 M 是紧凑复流形,D⊂M 是其上的还原正交分部,从而对数切线束 TM(-logD) 是全形琐细的。让 A 表示 M 的所有全形自变量群中保留了除数 D 的最大连通子群。取 M 上 (G,H) 类型的全形笛卡尔几何 (EH,Θ),其中 H⊂G 是复数李群。我们证明,对于每一个ρ∈A,当且仅当主 H 束 EH 在 D 上接纳一个对数连接Δ奇异时,(EH,Θ) 与(ρ⁎EH,ρ⁎Θ)同构,从而Θ被连接Δ保留。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logarithmic Cartan geometry on complex manifolds with trivial logarithmic tangent bundle
Let M be a compact complex manifold, and DM a reduced normal crossing divisor on it, such that the logarithmic tangent bundle TM(logD) is holomorphically trivial. Let A denote the maximal connected subgroup of the group of all holomorphic automorphisms of M that preserve the divisor D. Take a holomorphic Cartan geometry (EH,Θ) of type (G,H) on M, where HG are complex Lie groups. We prove that (EH,Θ) is isomorphic to (ρEH,ρΘ) for every ρA if and only if the principal H–bundle EH admits a logarithmic connection Δ singular on D such that Θ is preserved by the connection Δ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信