Adam Wasilewski , Krzysztof Juszczyszyn , Vera Suryani
{"title":"电子商务应用聚类方法的多因素评估","authors":"Adam Wasilewski , Krzysztof Juszczyszyn , Vera Suryani","doi":"10.1016/j.eij.2024.100562","DOIUrl":null,"url":null,"abstract":"<div><div>This research aimed to investigate the application of Vlse Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) multi-criteria decision-making to select the optimal clustering for e-commerce customer segmentation. In this context, clustering as an unsupervised machine learning method offered a way to overcome the limitations of traditional grouping, particularly by providing the ability to capture the diverse needs of consumers. A total of five different clustering methods were considered based on the behavioral data of e-commerce customers. Even though the analyzed algorithms were well-known and widely used, the comprehensive and multidirectional comparison was not trivial. Selected approaches were evaluated on the basis of twelve indicators (decision criteria), divided into four characteristics that take into account both the out-of-context aspects of clustering and the requirements arising from the context of using the clustering results. The results showed consistent outcomes from both analyzed Multi-Criteria Decision Methods, with some notable differences. The methods obtained the same ranking of the top three clustering algorithms (K-median - BIRCH - K-means). However, the TOPSIS and VIKOR sensitivity analysis recommended K-means in 87% of the cases and 60% of the variants verified, respectively. The parameterization of the decision factors had a significant impact on the final ranking of clustering options. This research demonstrated the practical application of the decision methods in selecting the best clustering for multivariate user interfaces to improve personalization in e-commerce.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"28 ","pages":"Article 100562"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-factor evaluation of clustering methods for e-commerce application\",\"authors\":\"Adam Wasilewski , Krzysztof Juszczyszyn , Vera Suryani\",\"doi\":\"10.1016/j.eij.2024.100562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research aimed to investigate the application of Vlse Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) multi-criteria decision-making to select the optimal clustering for e-commerce customer segmentation. In this context, clustering as an unsupervised machine learning method offered a way to overcome the limitations of traditional grouping, particularly by providing the ability to capture the diverse needs of consumers. A total of five different clustering methods were considered based on the behavioral data of e-commerce customers. Even though the analyzed algorithms were well-known and widely used, the comprehensive and multidirectional comparison was not trivial. Selected approaches were evaluated on the basis of twelve indicators (decision criteria), divided into four characteristics that take into account both the out-of-context aspects of clustering and the requirements arising from the context of using the clustering results. The results showed consistent outcomes from both analyzed Multi-Criteria Decision Methods, with some notable differences. The methods obtained the same ranking of the top three clustering algorithms (K-median - BIRCH - K-means). However, the TOPSIS and VIKOR sensitivity analysis recommended K-means in 87% of the cases and 60% of the variants verified, respectively. The parameterization of the decision factors had a significant impact on the final ranking of clustering options. This research demonstrated the practical application of the decision methods in selecting the best clustering for multivariate user interfaces to improve personalization in e-commerce.</div></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":\"28 \",\"pages\":\"Article 100562\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866524001257\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866524001257","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi-factor evaluation of clustering methods for e-commerce application
This research aimed to investigate the application of Vlse Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) multi-criteria decision-making to select the optimal clustering for e-commerce customer segmentation. In this context, clustering as an unsupervised machine learning method offered a way to overcome the limitations of traditional grouping, particularly by providing the ability to capture the diverse needs of consumers. A total of five different clustering methods were considered based on the behavioral data of e-commerce customers. Even though the analyzed algorithms were well-known and widely used, the comprehensive and multidirectional comparison was not trivial. Selected approaches were evaluated on the basis of twelve indicators (decision criteria), divided into four characteristics that take into account both the out-of-context aspects of clustering and the requirements arising from the context of using the clustering results. The results showed consistent outcomes from both analyzed Multi-Criteria Decision Methods, with some notable differences. The methods obtained the same ranking of the top three clustering algorithms (K-median - BIRCH - K-means). However, the TOPSIS and VIKOR sensitivity analysis recommended K-means in 87% of the cases and 60% of the variants verified, respectively. The parameterization of the decision factors had a significant impact on the final ranking of clustering options. This research demonstrated the practical application of the decision methods in selecting the best clustering for multivariate user interfaces to improve personalization in e-commerce.
期刊介绍:
The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.