从多源域学习域自适应掌纹防欺骗特征

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Chengcheng Liu , Huikai Shao , Dexing Zhong
{"title":"从多源域学习域自适应掌纹防欺骗特征","authors":"Chengcheng Liu ,&nbsp;Huikai Shao ,&nbsp;Dexing Zhong","doi":"10.1016/j.displa.2024.102871","DOIUrl":null,"url":null,"abstract":"<div><div>Palmprint anti-spoofing is essential for securing palmprint recognition systems. Although some anti-spoofing methods excel on closed datasets, their ability to generalize across unknown domains is often limited. This paper introduces the Domain-Adaptive Palmprint Anti-Spoofing Network (DAPANet), which leverages multiple known spoofing domains to extract domain-invariant spoofing clues from unlabeled domains. DAPANet tackles the domain adaptation challenge using three strategies: global domain alignment, subdomain alignment, and the separation of distinct subdomains. The framework consists of a public feature extraction module, a domain adaptation module, a domain classifier, and a fusion classifier. Initially, the public feature extraction module extracts palmprint features. Subsequently, the domain adaptation module aligns target domain features with source domain features to generate domain-specific outputs. The domain classifier provides initial classifiable features, which are then integrated by DAPANet, employing a unified fusion classifier for decision-making. Comprehensive experiments conducted on XJTU-PalmReplay database across various cross-domain scenarios confirm the efficacy of the proposed method.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"86 ","pages":"Article 102871"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning domain-adaptive palmprint anti-spoofing feature from multi-source domains\",\"authors\":\"Chengcheng Liu ,&nbsp;Huikai Shao ,&nbsp;Dexing Zhong\",\"doi\":\"10.1016/j.displa.2024.102871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Palmprint anti-spoofing is essential for securing palmprint recognition systems. Although some anti-spoofing methods excel on closed datasets, their ability to generalize across unknown domains is often limited. This paper introduces the Domain-Adaptive Palmprint Anti-Spoofing Network (DAPANet), which leverages multiple known spoofing domains to extract domain-invariant spoofing clues from unlabeled domains. DAPANet tackles the domain adaptation challenge using three strategies: global domain alignment, subdomain alignment, and the separation of distinct subdomains. The framework consists of a public feature extraction module, a domain adaptation module, a domain classifier, and a fusion classifier. Initially, the public feature extraction module extracts palmprint features. Subsequently, the domain adaptation module aligns target domain features with source domain features to generate domain-specific outputs. The domain classifier provides initial classifiable features, which are then integrated by DAPANet, employing a unified fusion classifier for decision-making. Comprehensive experiments conducted on XJTU-PalmReplay database across various cross-domain scenarios confirm the efficacy of the proposed method.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"86 \",\"pages\":\"Article 102871\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014193822400235X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014193822400235X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

掌纹防欺骗对于确保掌纹识别系统的安全至关重要。虽然一些反欺骗方法在封闭数据集上表现出色,但它们在未知领域的通用能力往往有限。本文介绍了领域自适应掌纹反欺骗网络(DAPANet),该网络利用多个已知的欺骗领域,从未标明的领域中提取与领域无关的欺骗线索。DAPANet 采用三种策略应对域适应挑战:全域对齐、子域对齐和分离不同的子域。该框架由公共特征提取模块、域适应模块、域分类器和融合分类器组成。首先,公共特征提取模块提取掌纹特征。随后,域适配模块将目标域特征与源域特征对齐,生成特定域的输出。领域分类器提供可分类的初始特征,然后由 DAPANet 对这些特征进行整合,采用统一的融合分类器进行决策。在 XJTU-PalmReplay 数据库上进行的各种跨域场景的综合实验证实了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning domain-adaptive palmprint anti-spoofing feature from multi-source domains
Palmprint anti-spoofing is essential for securing palmprint recognition systems. Although some anti-spoofing methods excel on closed datasets, their ability to generalize across unknown domains is often limited. This paper introduces the Domain-Adaptive Palmprint Anti-Spoofing Network (DAPANet), which leverages multiple known spoofing domains to extract domain-invariant spoofing clues from unlabeled domains. DAPANet tackles the domain adaptation challenge using three strategies: global domain alignment, subdomain alignment, and the separation of distinct subdomains. The framework consists of a public feature extraction module, a domain adaptation module, a domain classifier, and a fusion classifier. Initially, the public feature extraction module extracts palmprint features. Subsequently, the domain adaptation module aligns target domain features with source domain features to generate domain-specific outputs. The domain classifier provides initial classifiable features, which are then integrated by DAPANet, employing a unified fusion classifier for decision-making. Comprehensive experiments conducted on XJTU-PalmReplay database across various cross-domain scenarios confirm the efficacy of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信